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(57) ABSTRACT

We describe a system that performs prognostic-surveillance
operations based on an inferential model that dynamically
adapts to evolving operational characteristics of a monitored
asset. During a surveillance mode, the system receives a set
of time-series signals gathered from sensors in the moni-
tored asset. Next, the system uses an inferential model to
generate estimated values for the set of time-series signals,
and then performs a pairwise differencing operation between
actual values and the estimated values for the set of time-
series signals to produce residuals. Next, the system per-
forms a sequential probability ratio test (SPRT) on the
residuals to produce SPRT alarms. When a tripping 1ire-
quency of the SPRT alarms exceeds a threshold value, which
1s indicative of an incipient anomaly in the monitored asset,
the system triggers an alert. While the prognostic-surveil-
lance system 1s operating in the surveillance mode, the
system incrementally updates the inferential model based on

the time-series signals.

18 Claims, 15 Drawing Sheets

TRAIN

METADATA



U.S. Patent Oct. 24, 2023 Sheet 1 of 15 US 11,797.882 B2

OBSER- TRAIN
VATIONS

METADATA

OBSER- OPERATE
VATIONS

METADATA

L
2
>

FIG. 1B



U.S. Patent Oct. 24, 2023 Sheet 2 of 15 US 11,797.882 B2

ORSER- EVOLVE
VATIONS

METADATA

RETRAIN

OBSER-
VATIONS

L
2
-
O

METADATA

FIG. 1D



U.S. Patent Oct. 24, 2023 Sheet 3 of 15 US 11,797.882 B2

T

pfeRsdls

L
-

-, -
L.
an

I IEEREE R E LR B

[t "t St Sl Mt Yt Ml Sl Sy ¥,

gLt

AR
¢

{
A

35

L |
.

o

- 8 [}
- ‘.'l‘\‘\‘\‘\‘\‘h‘\‘\‘\‘\‘\‘\“

P
b
v b
ﬁﬁkj

;

SRR RP AV PP RP AR AUV

* B

L L o T P Y
FLISEISY ST SR

RCRCRP AU RV PP RC AR

[ ]

N IEEEEEEEEN
'-i-iih-i-i-h *ﬂ'.- -
A s ma -

L | & T e, - -
ettt e e e e e e T L

T e

St

. . ‘t_t‘t‘t‘ftt‘t_#‘t_t‘




U.S. Patent Oct. 24, 2023 Sheet 4 of 15 US 11,797.882 B2

UTILITY SYSTEM SUBSTATION
300 307
GENERATING L /
STATION .-‘
302 N
SUBSTATION
308
ELECTRICAL ' /
GENERATING SRID WITH ‘ HOMES AND
STATION SOWER | INES ® BUSINESSES
303 ‘ 310
306
GENERATING .‘
STATION o
304 .
SUBSTATION

309

DATA CENTER

320

FIG. 3



US 11,797,882 B2

L oL "
SINNEY Y _
14dS m,.ﬁwm_z JONIYISSIA
Pl
STVNAISTIM
\r,
- oy
2 m_wm.m_mm 50% STYNOIS
" a3 63 Q0 HOSNIS SIMIS-TINIL Z0b
5 13A0N " 13S8V
= [3SN L AIHOLINOW
4 ‘
A 001
n 3SVaAVLVQ
g |
= mm_,mmmﬂ d SIIYIS-TINIL
=
g |
-
&
-

00F WILSAS

07 FONVTHIAGNS-OILSONDOdd

ONINIVHL

U.S. Patent



U.S. Patent Oct. 24, 2023 Sheet 6 of 15 US 11,797.882 B2

DATA
502

MSET
TRAINER

504

MODEL
500

OBSERVATIONS MSET DECISIONS
5038 ' 510 512

FIG. 5A
(PRIOR ART)




U.S. Patent Oct. 24, 2023 Sheet 7 of 15 US 11,797.882 B2

RETRAINING
ADMINISTRATOR

538

EVOLVING
ADMINISTRATOR

234

EMSET EMSET
ANNOTATED TRAINER EVOLVER
DATA 524 536

522

ANNOTATED
MODEL

526

OBSERVATIONS EMSET
528 530

DECISIONS
532

FIG. 5B



U.S. Patent Oct. 24, 2023 Sheet 8 of 15 US 11,797.882 B2

RETRAINING
ADMINISTRATOR
538

EVOLVING
ADMINISTRATOR
534

EMSET
TRAINER
524

EMSET
EVOLVER
536

ANNOTATED
DATA

522

ANNOTATED
MODEL .
526

-------------------------------------------------------------------------------------------------

OBSERVATIONS EMSET DECISIONS
528 530 032

-k iy iy A R
o e S dp Sy 0 R 9k pb W iy e N Y Lk T

----------------------------------------------------------------------------------------------------

EMSET MAIN OPERATING LOOP 540

FIG. 5C




U.S. Patent Oct. 24, 2023 Sheet 9 of 15 US 11,797.882 B2

RETRAINING
ADMINISTRATOR
538

EVOLVING
ADMINISTRATOR

534

EMSET
EVOLVER
536

DATABASE EMSET
(ANNOTATED TRAINER
DATA) 524

522

ANNOTATED
MODEL
526
EVOLUTION
: LOOP 542

"--‘-‘--'-'--‘-‘--‘-'

OBSERVATIONS
528

DECISIONS
532

FIG. 5D



U.S. Patent

ANNOTATED
DATA
522

OBSERVATIONS
528

Oct. 24, 2023

RETRAINING
538

EMSET
TRAINER
524

ANNOTATED
MODEL
526

FIG. 5E

ADMINISTRATOR

Sheet 10 of 15

US 11,797,882 B2

EVOLVING
ADMINISTRATOR

534

EMSET
EVOLVER
536

"--'---'-'--"-“-'-'-'-‘-'-'-‘-‘

DECISIONS
532

RETRAINING
LOOP 544



U.S. Patent Oct. 24, 2023 Sheet 11 of 15 US 11,797,882 B2

CREATE TABLE m-y____timeseries(time TIMESTAMP, F1 NUM, F2 NUM, .... FN NUM);
CREATE MODEL m1 AS
SELECT MSET(F1, F2, F3.. FN |
JSON({"configuration™: {"training™: {
"data.header”: false,
"time.format™: "NoDate”,

"training.kemel”. "arctangent”,
"forgetting.factor”: 0.98,
"debug”: true,

"author": "Kenneth Baclawski",
0" d a_ta_,f_orm a-t“: 1 CSVH |
"description™: "Examples”,

“training.traction™ 0.5,

n, o

"training.extreme”; "global”,
"data.delimiter™: “,",
“analyze.data"; true,
"kernel.approximation”: "exact”,
"name": "Examples",
"training.sorikey”: "squared.norm”,
"training.windows": 1,
"training.inversion"; "pseudo”,
"statistics”; "median”

i

)

FROM my_timeseries

WHERE time between 2019-01-017T11:30° AND '2019-02-01T11:30" ;

CREATE MODEL m2 AS

SELECT MSET(F1, F2, F3.. FN)
FROM my timeseries

SELECT * FROM EMSET(my_timeseries);

FIG. 6
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RECEIVE A TRAINING SET COMPRISING
TIME-SERIES SIGNALS GATHERED FROM
SENSORS IN A MONITORED ASSET DURING
NORMAL FAULT-FREE OCPERATION
902

TRAIN THE MSET MODEL TO PREDICT
VALUES OF THE TIME-SERIES SIGNALS
BASED ON THE TRAINING SET
904
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 DURING A SURVEILLANCE MODE, RECEIVE|
| ASET OF TIME-SERIES SIGNALS |

GATHERED FROM SENSORS IN THE

MONITORED ASSET
1004

USE AN MSET MODEL TO GENERATE
ESTIMATED VALUES FOR THE SET OF
TIME-SERIES SIGNALS
1004

PERFORM A PAIRWISE DIFFERENCING
OPERATION BETWEEN ACTUAL VALUES
AND THE ESTIMATED VALUES FOR THE

SET OF TIME-SERIES SIGNALS TO
PRODUCE RESIDUALS
1006

| PERFORM A SPRT ON THE RESIDUALS TO |
f PRODUCE SPRT ALARMS :

WHEN A TRIPPING FREQUENCY OF THE
SPRT ALARMS EXCEED A THRESHOLD
VALUE, WHICH IS INDICATIVE OF AN |
L INCIPIENT ANOMALY IN THE MONITORED |
5 ASSET, TRIGGER AN ALERT :
1010
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| WHILE THE PROGNOSTIC-SURVEILLANCE
SYSTEM IS OPERATING IN THE
| SURVEILLANCE MODE, INCREMENTALLY
|  ADDING ONE OR MORE ADDITIONAL
| COMPONENTS TO THE MSET MODEL, AND
| USING AN EXPONENTIAL FORGETTING |
| FUNCTION TO ADJUST WEIGHTS APPLIED |
| TO OLDER COMPONENTS IN THE MSET
| MODEL TO REDUCE CONTRIBUTIONS OF

1012

AFTER A NUMBER OF INCREMENTAL

UPDATES HAVE BEEN APPLIED TO THE

| INFERENTIAL MODEL, SWAP THE
| INFERENTIAL MODEL WITH A RETRAINED
| MODEL, WHICH WAS RETRAINED DURING
| THE SURVEILLANCE MODE BASED ONA
| SET OF TIME-SERIES SIGNALS INCLUDING
|  RECENTLY GATHERED TIM! f
SIGNALS

FIG. 10
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PROGNOSTIC-SURVEILLANCE
TECHNIQUE THAT DYNAMICALLY
ADAPTS TO EVOLVING
CHARACTERISTICS OF A MONITORED
ASSET

BACKGROUND
Field

The disclosed embodiments generally relate to machine-
learning (ML)-based prognostic-surveillance techniques.
More specifically, the disclosed embodiments relate to an
ML-based prognostic-surveillance system, which continu-
ally adapts to evolving characteristics of a monitored asset,
and which 1s supported by database system extensions.

Related Art

Enormous numbers of sensors are presently being
deployed to monitor critical assets across different indus-
tries. For example, a medium-sized data center can include
over 1,000,000 sensors monitoring thousands of business-
critical servers, a modern passenger jet can include 75,000
sensors, and an o1l refinery can include over 1,000,000
sensors. These sensors generate large volumes of time-series
data, which can be analyzed using prognostic-surveillance
techniques based on machine-learning (ML) to detect the
onset of degradation mechanisms before problems arise.
(For example, see U.S. Pat. No. 7,181,631, entitled “Detect-
ing and Correcting a Failure Sequence i a Computer
System Belore a Failure Occurs,” by mventors Kenny C.
Gross, et al., filed on 11 Feb. 2004.)

However, nearly all existing ML-based prognostic sur-
veillance techniques are only capable of learning a static
task. This presumes that once an ML model has been traimned
to perform a specific prognostic-surveillance operation on
historic time-series data, the ML model can be applied to
perform the prognostic-surveillance operation on new data.
However, dynamically evolving tasks are common 1n real-
world environments. It 1s a mistake to assume that people,
machines and complex systems will always behave accord-
ing to unchanging patterns. People learn, machines wear out
or get upgraded, large software stacks get patched, and
complex integrated hardware/soltware systems adapt and
evolve 1n numerous ways.

Some ML-based techniques, such as reinforcement leamn-
ing (RL), explicitly modily an ML model 1n response to
teedback. However, the RL technique still presumes that the
underlying system being observed operates according to a
fixed behavior pattern. RL seeks only to improve the model,
not to adaptively evolve the model to accommodate chang-
ing behavior.

Moreover, because the above-described dense-sensor sys-
tems typically produce large volumes of time-series data, the
data 1s typically stored 1n large-scale time-series databases.
In these situations, 1t 1s advantageous to integrate the appli-
cation logic, which 1s used to process the time-series data,
into the database system itsell.

Hence, what 1s needed 1s an ML-based prognostic-sur-
veillance technique that dynamically adapts to evolving
characteristics of a momtored asset, and which 1s supported
by features 1n a database system.

SUMMARY

The disclosed embodiments provide a system that per-
forms prognostic-surveillance operations based on an infer-

10

15

20

25

30

35

40

45

50

55

60

65

2

ential model that dynamically adapts to evolving operational
characteristics of a monitored asset. During a surveillance
mode, the system receives a set ol time-series signals
gathered from sensors in the monitored asset. Next, the
system uses an inferential model to generate estimated
values for the set of time-series signals. The system then
performs a pairwise diflerencing operation between actual
values and the estimated values for the set of time-series
signals to produce residuals. Next, the system performs a
sequential probability ratio test (SPRT) on the residuals to
produce SPRT alarms. When a tripping frequency of the
SPRT alarms exceeds a threshold value, which 1s indicative
ol an incipient anomaly in the monitored asset, the system
triggers an alert. Also, while the prognostic-surveillance
system 1s operating 1n the surveillance mode, the system
incrementally updates the inferential model based on the
time-series signals.

In some embodiments, the inferential model 1s a Multi-
variate State Estimation Techmque (MSET) model.

In some embodiments, incrementally updating the MSET
model 1involves adding one or more additional components
to the MSET model, and using an exponential forgetting
function to adjust weights applied to older components 1n
the MSET model to reduce contributions of the older com-
ponents.

In some embodiments, incrementally updating the MSET
model involves using the Sherman-Morrison-Woodbury for-
mula to perform matrnx-inversion operations involved in
incrementally updating the MSET model.

In some embodiments, after a number of incremental
updates have been applied to the inferential model, the
system swaps the inferential model with a retrained model,
which was retrained during the surveillance mode based on
a set of time-series signals including recently gathered
time-series signals.

In some embodiments, the inferential model 1s periodi-
cally retrained during the surveillance mode and 1s stored 1n
a library to facilitate subsequent swapping operations.

In some embodiments, the inferential model 1s continu-
ously retrained during the surveillance mode to facilitate
swapping in a retrained model, which 1s as up-to-date as
possible.

In some embodiments, the system uses a relational data-
base management system (RDBMS), which includes struc-
tured query language (SQL) constructs that support opera-
tions mvolving the inferential model.

In some embodiments, the inferential model and associ-
ated mathematical operations are represented using an
expression tree stored i a complex JavaScript Object Nota-
tion (JSON) record 1n the RDBMS, wherein an SQL-JSON
function 1s used to manipulate the complex JSON record.

In some embodiments, the structured SQL constructs
include an SQL data definition language (DDL) statement,
which enables a table storing MSET monitored data to
activate evolving Multivariate State Estimation Technique
(EMSET) operations.

In some embodiments, the structured SQL constructs
include a table function that users can call to list all EMSET
models detected so far with mput data after the table 1s
activated for EMSET monitoring, which facilitates tracing
an evolutional history of MSET models associated with data
stored 1n the table.

In some embodiments, data points in the time-series
signals are annotated with provenance, timestamp and
welghting mnformation.

In some embodiments, the monitored asset comprises a
utility system asset.
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In some embodiments, the time-series signals gathered
from sensors in the monitored asset include signals speci-
tying one or more of the following: temperatures; currents;
voltages; resistances; capacitances; vibrations; cooling sys-
tem parameters; and control signals.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1A presents a high-level view of a training process
for a prognostic-surveillance system 1n accordance with the
disclosed embodiments.

FIG. 1B presents a high-level view of normal operation of
the prognostic-surveillance system in accordance with the
disclosed embodiments.

FIG. 1C presents a high-level view of an incremental
updating process for the prognostic-surveillance system in
accordance with the disclosed embodiments.

FIG. 1D presents a high-level view of a retraining process
for the prognostic-surveillance system in accordance with
the disclosed embodiments.

FIG. 2 illustrates an exemplary ML model transform
represented as an expression tree in accordance with the
disclosed embodiments.

FI1G. 3 1llustrates an exemplary utility system use case for
the EMSET technique in accordance with the disclosed
embodiments.

FIG. 4 illustrates an exemplary prognostic-surveillance
system 1n accordance with the disclosed embodiments.

FIG. SA presents a diagram 1illustrating a normal MSET
system.

FIG. 5B presents a diagram illustrating an EMSET system
in accordance with the disclosed embodiments.

FIG. 5C presents a diagram 1llustrating a main operating,
loop for the EMSET system 1n accordance with the disclosed
embodiments.

FIG. 5D presents a diagram illustrating an evolution loop
for the EMSET system in accordance with the disclosed
embodiments.

FIG. S5E presents a diagram 1llustrating a retraining loop
for the EMSET system in accordance with the disclosed
embodiments.

FIG. 6 presents exemplary SQL statements that facilitate
EMSET processing operations 1n accordance with the dis-
closed embodiments.

FIG. 7 presents associated query results 1n accordance
with the disclosed embodiments.

FIG. 8 illustrates contents of a model represented as a
binary JSON data type in accordance with the disclosed
embodiments.

FIG. 9 presents a flow chart illustrating the model-training,
process 1n accordance with the disclosed embodiments.

FIG. 10 presents a flow chart illustrating prognostic-
survelllance operations and dynamic model updating opera-
tions 1n accordance with the disclosed embodiments.

DETAILED DESCRIPTION

The following description 1s presented to enable any
person skilled in the art to make and use the present
embodiments, and 1s provided 1n the context of a particular
application and 1ts requirements. Various modifications to
the disclosed embodiments will be readily apparent to those
skilled 1n the art, and the general principles defined herein
may be applied to other embodiments and applications
without departing from the spirit and scope of the present
embodiments. Thus, the present embodiments are not lim-
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4

ited to the embodiments shown, but are to be accorded the
widest scope consistent with the principles and features
disclosed herein.

The data structures and code described 1n this detailed
description are typically stored on a computer-readable
storage medium, which may be any device or medium that
can store code and/or data for use by a computer system. The
computer-readable storage medium includes, but 1s not
limited to, volatile memory, non-volatile memory, magnetic
and optical storage devices such as disk drives, magnetic
tape, CDs (compact discs), DVDs (digital versatile discs or
digital video discs), or other media capable of storing
computer-readable media now known or later developed.

The methods and processes described i1n the detailed
description section can be embodied as code and/or data,
which can be stored in a computer-readable storage medium
as described above. When a computer system reads and
executes the code and/or data stored on the computer-
readable storage medium, the computer system performs the
methods and processes embodied as data structures and code
and stored within the computer-readable storage medium.
Furthermore, the methods and processes described below
can be included in hardware modules. For example, the
hardware modules can include, but are not limited to,
application-specific integrated circuit (ASIC) chips, field-
programmable gate arrays (FPGAs), and other program-
mable-logic devices now known or later developed. When
the hardware modules are activated, the hardware modules
perform the methods and processes included within the
hardware modules.

Overview

The disclosed embodiments provide a new framework
that supports ML prognostics for large-scale time-series
databases containing data from dynamically evolving moni-
tored systems. This new framework provides ML processing
via a set of extensible SQL functions. In a preferred embodi-
ment, 1t uses a vanation of MSET called evolving MSET
(EMSET), which continuously adapts to dynamically evolv-
ing monitored assets. By learning continuously as a moni-
tored asset evolves, the system avoids “model mertia™
through use of a novel “exponential forgetting function,”
which gradually “retires” parts of the model that were
trained on older data, while continuously increasing
“weighting factors™ for newer parts of the model. Further-
more, the new EMSET technique can capture the evolution
history of models derived from evolving data and can also
provide provenance tracking.

Existing MIL-based prognostic-surveillance systems typi-
cally rely on data stored 1n file systems, and they also require
humans to keep track of the data and associated derived data
models. This means the model-derivation and provenance-
management tasks have to be explicitly performed by devel-
opers. Our new system eliminates the need for developers to
perform such error-prone management tasks by incorporat-
ing the data and associated model derivation processes nto
an RDBMS. The system can also facilitate model evolution
tracking 1nside the RDBMS through use of an SQL exten-
$101.

Model derivation often requires various configuration
parameters, and provenance tracking involves storing and
querying those configuration parameters. However, because
the configuration parameters are dynamic and can vary over
time for many use cases, our new system manages model
derivation using a flexible JSON-based data schema. This
flexible schema enables users to easily enter ad-hoc query
and search configuration parameters, which are used to
tacilitate model-derivation and optimization operations.
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The disclosed embodiments perform anomaly discovery
for evolving tasks using the Multivariate State Estimation
Technique (MSET). In order to adapt the system as the task
and its requirements evolve, MSET 1s extended to adapt to
new behavior by training using new data while at the same
time gradually “forgetting™ the parts of the model that were
trained using older data. One embodiment of the present
invention uses an “exponential forgetting function,” wherein
the flexible EMSET framework allows such functions to be
used. By adjusting parameters in the exponential forgetting,
function, a human operator can directly specity the rate of
evolution that 1s taking place to facilitate “subject matter
expert” (SME) customization. Alternatively, the rate of
evolution can itself be learned autonomously, which 1is
advantageous for use cases where 1t 1s 1nfeasible to have
deep-level SME oversight. For these use cases, SMEs with
deep knowledge monitored assets and processes, but who
may not be specialists in ML prognostics, will benefit from
the system optimizing the evolution of the MSET models
automatically based on empirical results.

Furthermore, the EMSET automation can be controlled
through an SQL extension interface, which makes 1t easy to
use. This interface takes advantage of RDBMS capabilities
to facilitate: (1) managing flexible schema data; (2) keeping,
track of configuration and provenance parameters for con-
trolling the quality of learning; and (3) monitoring and
applying ML to data using an RDBMS scheduler at desired
time 1ntervals.

Note that existing ML techniques are based on static
models. This means that once an ML model has been
developed, there 1s no mtrinsic mechanism for evolving the
model other than starting over from the beginning. While
ML models can be very eflective, they are also relatively
expensive 1n terms ol the time and resources required to
perform a variety of tasks. For example: (task 1) ML model
developers must be scheduled and, 1n some cases hired; (task
2) the development process i1tsell requires time and
resources; (task 3) the ML model must be integrated with
other components; and (task 4) the ML model must be
deployed. This means that when a new ML model is
developed for a new use case, some or all of the above-listed
tasks may need to be redone.

Our new system reduces or eliminates the efiort required
for each of these tasks by leveraging RDBMS and extended
SQL functionality to facilitate the life cycle management of
ML models. This affects all of the ML development tasks
cited above. For example, the model 1s evolved 1n place so
that no new 111tegrat1011 (task 3) or deployment (task 4) 1s
required. Also, while it 1s useful to have an experienced ML
model developer who can supervise the evolution of the ML
model (task 1), it 1s not necessary. Finally, developing a
modified ML model (task 2) i1s considerably easier than
developing an entirely new ML model. Moreover, our new
technique requires no hardware upgrades 1n monitored
assets, making this technique immediately backward-com-
patible with existing assets.

The operations performed by our new system are 1llus-
trated 1n FIGS. 1A-1D. FIGS. 1A and 1B illustrate opera-
tions performed by existing ML solutions; namely, the
development of an ML model 1n FIG. 1A and the operation
of the ML model 1n FIG. 1B. While the operations 1llustrated
in FIGS. 1A and 1B are performed by existing ML systems,
the organization scheme for associated processes and data 1s
new and has advantages over existing ML development
techniques. These advantages include the following: (1) the
ML model-development process 1s more controlled and
more ethicient; (2) the processes and data sets are structured
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to support evolution; (3) data provenance 1s extended to
include data, process and logic provenance; and (4) each ML
model 1s self-contained within self-describing JSON data
that, (a) specifies how the ML model was derived, (b)
quantitatively explams the functioning of the ML model, and
(c) can be queried using standard query languages.

FIGS. 1C and 1D 1illustrate the two levels of adaptation
provided by our framework, namely: (1) incremental evo-
lution of the ML model (FIG. 1C); and retraining of the ML
model (FIG. 1D). The first level of adaptation 1s relatively
casy to accomplish, and can be performed quickly. More-
over, 1t can be performed online during system operation,
and no significant ML development expertise 1s required.

The disadvantage of this level of adaptation 1s that over
time 1ts performance can deteriorate. (Note that in this
context, the term “performance” 1s associated with an ultra
low rate of false positives/negatives as well as a highest
possible sensitivity.) To deal with this disadvantage, the
framework includes a second level of adaptation, which 1s
more dificult, and will likely be performed offline. How-
ever, the level of ML development expertise required for this
second level of adaptation 1s still lower than 1s required for
the maitial development of the ML model. Moreover, the new
ML model remains compatible with other components and
can easily be deployed.

FIG. 2 1llustrates an exemplary data structure that 1s used
by our invention. In FIG. 2, the central data structure 1s
labeled “model” and an instance of this data structure 1s an
ML model. Each ML model 1s based on representative
observations of the problem being modeled. They are
referred to as “model observations™ 1n the diagram. Fach
ML teehmque includes an associated method for selecting
and processing model observations. Moreover, each ML
model 1s defined by transform functions that are typically
expressed using linear algebraic techniques. Some of the
most important linear algebraic notions are shown in the
diagram, such as matrix operations, decomposition and
spectra, but there exist many other linear algebraic structures
that are well-known to persons skilled 1n the art. Each model
also includes one or more kernel functions to deal with the
nonlinear aspects of the problem being modeled. Some
examples of kernel functions are shown in FIG. 2.

Each model also uses two statistical techniques. One
statistical technique 1s the primary model statistical tech-
nique, which represents the statistical behavior of the prob-
lem being modeled by the ML model. This statistical tech-
nique models sensor measurement uncertainty. The other
statistical technique 1s concerned with the accuracy of the
ML model as an approximation of the problem being mod-
cled. Note that the real world 1s far too complex to be
completely modeled, so some level of approximation 1is
necessary. Each statistical technique includes two primary
statistics: the center and the dispersion, wherein the center 1s
the central tendency of a probability distribution, and the
dispersion 1s the extent to which a probability distribution 1s
spread out. The primary model statistical technique uses the
mean as the center and the standard deviation as the disper-
$101.

Exponential Forgetting Function

As mentioned above, our new technique makes use of an
exponential forgetting function, which assigns weights to
older entities that decay exponentially over time. At each
step 1n the process of updating the weights, the weights are
modified by multiplying by a constant. As a result, the
forgetting function is referred to as being “linear.” We now
explain the mathematics behind a use-case-configurable
exponential forgetting function, and extensions to this expo-
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nential forgetting function for non-uniform observations.
This exponential forgetting function has been integrated
with MSET to achieve a self-adapting process, which we
call the Evolving MSET (EMSET) technique.

There exist many regression-type machine-learning (ML)
techniques that can be used for anomaly discovery 1in
fime-series signals, and all of them use traiming data to
produce a model. The training data comprises a collection of
observations of the system being modeled, wherein the
model includes components that are related to the training
data 1n a complex manner. In the MSET technique, the
components of the model have a structure similar to the
observations 1n the training data. By contrast, in EMSET,
each observation 1n the tramning data has an associated
welght. A weight 1s a number that could, 1n principle, be any
number, even one that 1s negative. Thus, 1t generalizes the
MSET technique, which can be regarded as a special case 1n
which every weight 1s equal to 1. The weights are propa-
gated to the model when the model 1s trained.

Mathematically, a model consists of a collection {c;,
C,, - ..,C,_} of weighted components. Each component c; has
provenance information as well as a weight w.=weight(c,),
for 1=1, 2, . . . , m. The total weight T=X,_,"w, 1s assumed
to be a positive number. An incremental update of the model
adds additional components {d,, d,, ..., d_} to the model,
which have weights vjzweight(dj), for =1, 2, . . ., n. The
welghts w, are adjusted so that the total weight of the new
collection {¢,, C,,...,¢C,,d,,d,, ..., d } 1s the same as
before. In other words, if w'; 1s the new weight given to c,
then X,_"w'+X._,"v.1s equal to T. The simplest way that this
can be accomplished 1s to set w'; equal to kw, for a constant
k and 1=1, 2, . . . , m. By a simple calculation, one can
determine that

-

1s well-defined since T was assumed to be a positive number.

The most common special case 1s the one for which n=1
and v,=1, 1.e., a single component 1s added to the model with
unit weight. In this case, the k 1s

1
1l ——.
T

An “old” component that has had i1ts weight modified p times
with a series of unit weight single components will have had
its weight multiphed by k”. If r=—In(1-1/T), then k=e*. In
other words, the weight 1s decaying exponentially at the rate
r. Conversely, for purposes of this disclosure, the rate r 1s
known empirically for any given use case, so that T 1s set to

and therefore k=e™.

The analysis given so far presumed that the updates occur
at uniform times. If the i”* component has a timestamp t,
then the weight of the i”* component should be proportional
to e’". Let a be the proportionality constant. Then, the total
weight of the components 1s T=aX,_,"e". We now add a new
component at timestamp t__ , with weight w__ , proportional
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to e+, To ensure that the total weight remains the same, the
proportionality constant 1s changed from a to ka. The weight
of each component, including the new component, will then
be kae™. The total weight remains the same provided that the
following holds:

H m+1

aZe”f =7 = kaz ¢

i=1 i=1

Solving for k gives:

&
1
1
1

where S=X._,”e". The constant of proportionality a can be
computed using any of the weights. In particular, w,_=ae"
so a=w,_e . The weight of the new component is then
w,_.=kae"=kw, e 17

To avoid having exponentials that are so large that they
overflow the capacity of a variable, the timestamps should
be relative to an initial point 1n time that 1s close to the
beginning of the sequence of timestamps. For example, one
could take the 1nitial point in time to be t;. It 1s easy to see
how to adjust the formulas 1n this case. Using this conven-
fion, the technique for updating the weights when a new
component 1s added at timestamp t__, then proceeds as
follows:

1. Set E=e" 17",

2. Set

3. Update the existing weights by replacing each weight
w. by kw,, fori1=1, 2, ..., m.

4. Set w,_,,=w, e "7 where w,_ is the new value of

the m™ weight.

5. Update S by setting it to S+E.

The vanable S 1s an auxiliary variable that 1s 1mnitialized to
Y. _,"e"% ") when the technique is (re)trained, where n is the
number of 1nitial components.

We now explain why the forgetting function 1s referred to
as being both linear and exponential. It 1s linear because at
every update step the existing weights are multiplied by a
constant k, which 1s a linear modification. On the other hand,
the forgetting function can be said to be exponential because
the weights are decaying exponentially at rate r.
Exemplary Utility System

FIG. 3 illustrates an exemplary “utility system™ use case
for the EMSET technique. Although, please note that
EMSET can be used to perform prognostic-surveillance
operations for any monitored asset that generates time-series
sensor data, and 1s not meant to be limited to such utility
system assets.

FIG. 3 illustrates a utility system 300 comprising a set of
generating stations 302-304 connected to homes and busi-
nesses 310 through an electrical grid 306 1n accordance with
the disclosed embodiments. Note that generating stations
302-304 can generally include any type of facility that
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generates electricity, such as a nuclear power plant, a solar
power plant, a windmill or a windmill “farm,” or a coal-
fired, natural gas or oil-burning power plant. Generating
stations 302-304 connect into an electrical grid 306, which
includes power lines, and which can transier electricity to
homes and businesses 310 within a region served by utility
system 300, and can also transfer electricity to and from
other utility systems. Note that electrical grid 306 transiers
clectricity to homes and businesses 310 through substations
307-309, which include transformers.

As 1llustrated by the arrows 1n FIG. 3, a data center 320
receives data in the form of time-series sensor signals from
the various assets in utility system 300. For example data
center 320 can receive time-series signal from a coal-fired
power plant 1n generating station 302 or from a transformer
in substation 307. Data center 320 can then use these
time-series signals to perform prognostic-survelllance
operations on such utility system assets as 1s described 1n
more detail below.

Prognostic-Surveillance System

FIG. 4 illustrates an exemplary prognostic-surveillance
system 400, which, for example, can reside within data
center 320 illustrated 1n FIG. 3. During operation, prognos-
tic-surveillance system 400 accesses a time-series database
406 containing time-series signals. As illustrated 1in FIG. 4,
prognostic-surveillance system 400 operates on a set of
time-series sensor signals 404 obtained from sensors in a
monitored asset 402, such as a transformer or a power plant.
Note that time-series signals 404 can originate from any type
of sensor, which can be located 1n a component 1n monitored
asset 402, including: a voltage sensor; a current sensor; a
pressure sensor; a rotational speed sensor; and a vibration
SENnsor.

During operation of prognostic-surveillance system 400,
time-series signals 404 can feed into a time-series database
406, which stores the time-series signals 404 for subsequent
analysis. Next, the time-series signals 404 either feed
directly from monitored asset 402 or from time-series data-
base 406 mto an MSET pattern-recognition model 408.
Although it 1s advantageous to use MSET {for pattern-
recognition purposes, the disclosed embodiments can gen-
crally use any one of a generic class of pattern-recognition
techniques referred to as nonlinear, nonparametric (NLNP)
regression, which includes neural networks, support vector
machines (SVMs), auto-associative Kkernel regression
(AAKR), and even simple linear regression (LR).

Next, MSET model 408 1s “trained” to learn patterns of
correlation among the time-series signals 404. This training
process mvolves a one-time, computationally intensive com-
putation, which 1s performed oflline with accumulated data
that contains no anomalies. This training process and asso-
ciated retraining operations are performed by training mod-
ule 420 and resulting trained models are stored in a model
database 422.

The pattern-recogmition system 1s then placed into a
“real-time surveillance mode,” wherein a trained MSET
model 408, which 1s retrieved from model database 422, 1s
used to predict what each signal should be, based on other
correlated variables; these are the “estimated signal values™
410 illustrated 1n FI1G. 4. Next, the system uses a diflerence
module 412 to perform a pairwise diflerencing operation
between the actual signal values and the estimated signal
values to produce residuals 414. The system then performs
a “detection operation” on the residuals 414 using SPRT

module 416 to detect anomalies and possibly to generate
SPRT alarms 418. (For a description of the detailed opera-
tion of SPRT module 416, please see Wald, Abraham, June
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1945, “Sequential Tests of Statistical Hypotheses,” Annals
of Mathematical Statistics, 16 (2): 117-186.) The system can
then determine whether an operational anomaly has
occurred in the monitored asset 402 based on these SPRT
alarms.

Ordinary MSET Versus EMSET

FIG. 5A presents a flow diagram for an ordinary use case
for MSET. As illustrated 1n FIG. SA, data 502 comprising
time-series sensor signals 1s used by an MSET trainer 504 to
train a model 506. This 1s done once for each model. The
model 506 i1s then used by MSET module 510 to make
decisions 512 (e.g., raise alarms for anomalous sensor
readings) for a series of observations 3508. This 1s the
ordinary MSET operating loop. Note that the decisions are
not fed back during this loop, and model 506 1s not modified.
Also note that detecting that a new model 1s needed and
training 1t are not part of this technique.

In contrast, FIG. 5B presents a flow diagram for EMSET.
As 1n ordinary MSET, an EMSET trainer module 524 uses
data to train a model. However, the data 1s annotated with
provenance, timestamp and weighting imnformation and 1s
referred to as “annotated data” 522, wherein EMSET trainer
524 uses annotated data 522 to produce an annotated model

526. As 1n ordinary MSET, the annotated model 526 1s used
by EMSET module 330 to make decisions 532 based on a
series of observations 528. Note that the decisions 532 are
not fed back during this loop, and the annotated model 526
1s not modified. However, unlike ordinary MSET 1illustrated
in FIG. SA, EMSET module 530 uses the annotations
(especially the weights) during the process of making its
decisions. These operations all take place 1in the main
operating loop 540, which 1s highlighted by the box com-
prising dashed lines 1 FIG. 5C. Note that this main oper-
ating loop 340 1s the fastest loop 1n EMSET.

The decisions made in main operating loop 540 are
monitored by an evolving administrator module 534, which
1s responsible for determining whether annotated model 526
needs to be updated due to changes in the environment.
During this determination process, evolving administrator
534 can employ techniques as simple as periodically updat-
ing annotated model 526, or as complex as employing
another machine-learning technique to determine whether
an increased alarm rate 1s indicative of an anomaly or caused
by changes 1n the environment. When evolving administra-
tor 534 determines that a new model 1s required, 1t invokes
EMSET evolver module 336 instead of EMSFET trainer
module 524. Next, EMSET evolver 536 performs an incre-
mental update to annotated model 526. Note that an incre-
mental update requires considerably fewer computational
operations than would be required to train a new model. Also
note that the most time-consuming operation involved in
training an MSET model 1s a very large matrix inversion
operation. However, when only a small number of compo-
nents are added to the annotated model 526, this matrix
inversion can be performed using the computationally less
expensive Sherman-Morrison-Woodbury formula. (See
Sherman, Jack; Morrison, Winifred J. (1949). “Adjustment
of an Inverse Matrix Corresponding to Changes in the
Elements of a Given Column or a Given Row of the Original
Matrix” (abstract). Annals of Mathematical Statistics. 20:
621.) The incrementally updated annotated model 3526 1s
then used by EMSET module 530 1n main operating loop
540.

During operation, evolving administrator 334 manages an
evolution loop 542, which 1s 1llustrated by the dashed lines
in FIG. 5D. Note that evolution loop 542 i1s executed less
often than main operating loop 540. Also note that evolving
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administrator 534 has access to both decisions and obser-
vations in the main operating loop 540, and these decisions
and observations can be stored 1n a database 522, which
contains annotated data.

However, evolution loop 542 has limitations. Although
evolution loop 542 suflices for gradually changing circums-
stances, 1t 1s not suilicient for more drastically changing
circumstances. Another problem 1s that while incremental
updates to annotated model 526 are accurate when only a
small number of updates are performed, accuracy is lost 1f
too many are performed.

To deal with this problem, a retraiming administrator
module 538 monitors evolving administrator 534 to deter-
mine whether 1t 1s necessary to retrain annotated model 526
(for example, based on a threshold number of updates).
When retraining administrator 538 determines that anno-
tated model 526 must be retrained, it invokes EMSET trainer
524. As previously mentioned, database 522 has been aug-
mented with additional observations and decisions, which
EMSET trainer 524 uses to retrain annotated model 526.

Retraining administrator 538 manages retraining loop
544, which 1s illustrated by the dashed lines that appear 1n
FIG. SE. This retraining loop 544 1s the slowest loop because
training a new model requires considerable time and eflort.
In practice, the retraining can be performed in parallel with
other operations of EMSET. One strategy 1s to pretrain a
library of models that can be retrieved quickly when cir-
cumstances change abruptly. This improves response time,
but because the pretrained models are not necessarily reflec-
tive of the current circumstances, such a strategy 1s only a
temporary solution until the retrained model 1s available.
Another strategy 1s to continually and proactively train
models 1n case they are needed. However, this 1s feasible
only 1f suflicient computing resources are available, and
rapid response time 1s critical.

The reason multiple incremental updates can lose accu-
racy 1s that while the heart of the training of an MSET model
involves a matrix mversion, there 1s more to the technique.
A small number of incremental updates will not have a
significant negative impact on the MSET model, but as the
number of incremental updates increases, the incrementally
updated model will diverge from the ideal model. An
incrementally updated model also increases in size com-
pared with the 1deal model, which reduces the performance
of main operating loop 540, but this eflect 1s relatively
minor. The main reason for limiting the number of 1ncre-
mental updates 1s divergence from the 1deal model.

Database Support
A RDBMS can be augmented to facilitate EMSET as 1s

illustrated by the SQL statements that appear in FIG. 6.
Referring to FIG. 6, these statements {irst create a table
“my_timeseries” with a time column to record the time-
stamp, and a set of feature columns to record the feature
observed value for a monitored asset. Note that the MSET
( ) function 1s an SQL aggregation function that computes a
model using the MSET technique and returns a JSON type
data that captures all the derived mathematical results that
can be used to interpret the result.

We next determine how many evolving MSET models
there are using a special SQL table function called “EMSET
( )’ As mentioned above, EMSET 1s a vaniation of MSET,
which continuously adapts to dynamically evolving moni-
tored assets. By learning continuously as a monitored asset
evolves, the system avoids “model mertia” through use of a
novel “exponential forgetting function,” which gradually
“retires” parts of the model that were trained on older data,
while continuously increasing “weighting factors™ for newer
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parts of the model. Existing ML-based prognostic-surveil-
lance systems typically rely on data stored in file systems,
and they also require humans to keep track of the data and
associated derived data models. This means the model-
derivation and provenance-management tasks have to be
explicitly performed by developers. Our new system elimi-
nates the need for developers to perform such error-prone
management tasks by incorporating the data and associated
model derivation processes into an RDBMS. Exemplary
results from this query are illustrated 1n the table that appears
in FIG. 7.

Note that in a preferred embodiment, we can use an
SQL/JSON expression to query the JSON data type repre-
senting the model using associated MSET 1input configura-
tion parameters to maximize the full explanability (with
respect to both data and logic) of the provenance of the
model. More specifically, the inferential model and associ-
ated mathematical operations can be represented using an
expression tree stored i a complex JSON record in the
RDBMS, wherein an SQL-JSON {function 1s used to
mampulate the complex JSON record. An exemplary model
in the form of a JSON binary data type 1s illustrated in FIG.
8.

Training

FIG. 9 presents a tlow chart illustrating a process for
initially training an MSET model 1n accordance with the
disclosed embodiments. During a training mode, which
precedes the surveillance mode, the system recerves a train-
ing set comprising time-series signals gathered from sensors
in a monitored asset during normal fault-free operation (step
902). The system then trains the MSET model to predict
values of the time-series signals based on the training set
(step 904).

Detecting Anomalies

FIG. 10 presents a flow chart illustrating a process for
detecting anomalies 1n an asset under surveillance based on
time-series signals 1n accordance with the disclosed embodi-
ments. During a surveillance mode, the system receives a set
of time-series signals gathered from sensors in the moni-
tored asset (step 1002). Next, the system uses an MSET
model to generate estimated values for the set of time-series
signals (step 1004). The system then performs a pairwise
differencing operation between actual values and the esti-
mated values for the set of time-series signals to produce
residuals (step 1006). Next, the system performs a sequential
probability ratio test (SPRT) on the residuals to produce
SPRT alarms (step 1008). Then, when a tripping frequency
of the SPRT alarms exceeds a threshold value, which 1s
indicative of an incipient anomaly 1n the monitored asset, the
system triggers an alert (step 1010). Also, while the prog-
nostic-surveillance system 1s operating 1n the surveillance
mode, the system incrementally updates the inferential
model by adding one or more additional components to the
MSET model, and using an exponential forgetting function
to adjust weights applied to older components 1n the MSET
model to reduce contributions of the older components (step
1012). Then, after a number of incremental updates have
been applied to the inferential model, the system swaps the
inferential model with a retrained model, which was
retrained during the surveillance mode based on a set of
time-series signals 1ncluding recently gathered time-series
signals (step 1014).

Various modifications to the disclosed embodiments will
be readily apparent to those skilled in the art, and the general
principles defined herein may be applied to other embodi-
ments and applications without departing from the spirit and
scope of the present invention. Thus, the present invention
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1s not limited to the embodiments shown, but 1s to be
accorded the widest scope consistent with the principles and
teatures disclosed herein.

The foregoing descriptions of embodiments have been
presented for purposes of 1llustration and description only.
They are not intended to be exhaustive or to limit the present
description to the forms disclosed. Accordingly, many modi-
fications and vanations will be apparent to practitioners
skilled 1n the art. Additionally, the above disclosure 1s not
intended to limit the present description. The scope of the
present description 1s defined by the appended claims.

What 1s claimed 1s:

1. A method for performing prognostic-surveillance
operations based on an inferential model that dynamically
adapts to evolving operational characteristics of a monitored
asset, wherein during a surveillance mode for a prognostic-
survelllance system, the method comprises:

receiving a set of time-series signals gathered from sen-

sors 1n the monitored asset;

using an inferential model to generate estimated values

for the set of time-series signals;

determining whether the estimated values diverge from

actual values for the set of time-series signals;

if the estimated values are determined to diverge, which

1s 1ndicative of an incipient anomaly in the monitored
asset, triggering an alert;

while the prognostic-surveillance system 1s operating 1n

the surveillance mode, incrementally updating the

inferential model based on the time-series signals,

wherein incrementally updating the inferential model

includes at least one of:

adding one or more additional weighted components to
the inferential model; and

adjusting weights to older components in the inferential
model to reduce contributions of the older compo-
nents; and

after one or more mcremental updates have been applied

to the inferential model, swapping the updated infer-
ential model with a retrained model that was retrained
during the surveillance mode based on a set of time-
series signals including recently gathered time-series
signals.

2. The method of claim 1, wherein determining whether
the estimated values diverge from the actual values com-
Prises:

performing a paiwrwise diflerencing operation between

actual values and the estimated values for the set of
time-series signals to produce residuals;
performing a sequential probability ratio test (SPRT) on
the residuals to produce SPRT alarms; and

determining that the estimated values diverge from the
actual values when a tripping frequency of the SPRT
alarms exceeds a threshold value.

3. The method of claim 1, wherein the inferential model
comprises a Multivariate State Estimation Technique
(MSET) model.

4. The method of claim 3, wherein incrementally updating,
the MSET model mvolves adding one or more additional
components to the MSET model, and using an exponential
forgetting function to adjust weights applied to older com-
ponents 1n the MSET model to reduce contributions of the
older components.

5. The method of claim 4, wherein incrementally updating
the MSET model involves using the Sherman-Morrison-
Woodbury formula to perform matrix-inversion operations
involved 1n incrementally updating the MSET model.
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6. The method of claim 1, wherein the inferential model
1s periodically retrained during the surveillance mode and 1s
stored 1n a library to facilitate subsequent swapping opera-
tions.

7. The method of claim 1, wherein the inferential model
1s continuously retrained during the surveillance mode to
facilitate swapping in a retrained model, which 1s as up-to-
date as possible.

8. The method of claim 1, wherein the method 1s per-

formed using a relational database management system
(RDBMS), which includes structured query language (SQL)

constructs that support operations involving the inferential

model.
9. The method of claim 8, wherein the structured SQL
constructs include an SQL data definition language (DDL)
statement, which enables a table storing MSET monitored
data to activate evolving Multivarniate State Estimation Tech-
nique (EMSET) operations.
10. The method of claim 9, wherein the structured SQL
constructs include a table function that users can call to list
all EMSET models detected so far with input data after the
table 1s activated for EMSET monitoring, which facilitates
tracing an evolutional history of MSET models associated
with data stored 1n the table.
11. The method of claim 8, wherein the inferential model
and associated mathematical operations are represented
using an expression tree stored in a complex JavaScript
Object Notation (JSON) record 1n the RDBMS, wherein an
SQL-JSON function 1s used to mampulate the complex
JSON record.
12. The method of claim 1, wherein the time-series signals
gathered from sensors 1n the momtored asset include signals
speciiying one or more of the following:
temperatures;
currents;
voltages;
resistances:
capacitances;
vibrations;
cooling system parameters; and
control signals.
13. A non-transitory, computer-readable storage medium
storing 1nstructions that when executed by a computer cause
the computer to perform a method for performing prognos-
tic-surveillance operations based on an inferential model
that dynamically adapts to evolving operational character-
istics of a monitored asset, wherein during a surveillance
mode for a prognostic-surveillance system, the method
COmprises:
recerving a set of time-series signals gathered from sen-
sors 1n the monitored asset:
determining whether the estimated values diverge from
actual values for the set of time-series signals;
11 the estimated values are determined to diverge, which
1s 1ndicative of an incipient anomaly 1n the monitored
asset, triggering an alert;
while the prognostic-surveillance system 1s operating 1n
the surveillance mode, incrementally updating the
inferential model based on the time-series signals,
wherein imcrementally updating the inferential model
includes at least one of:
adding one or more additional weighted components to
the inferential model; and

adjusting weights to older components in the inferential
model to reduce contributions of the older compo-
nents; and
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after one or more incremental updates have been applied
to the inferential model, swapping the updated infer-
ential model with a retrained model that was retrained
during the surveillance mode based on a set of time-
series signals including recently gathered time-series
signals.

14. The non-transitory, computer-readable storage
medium of claim 13, wherein determinming whether the
estimated values diverge from the actual values comprises:

performing a pairwise diflerencing operation between

actual values and the estimated values for the set of
time-series signals to produce residuals;
performing a sequential probability ratio test (SPRT) on
the residuals to produce SPRT alarms; and

determining that the estimated values diverge from the
actual values when a tripping frequency of the SPRT
alarms exceeds a threshold value.

15. The non-transitory, computer-readable storage
medium of claim 13, wherein the inferential model com-
prises a Multivariate State Estimation Technique (MSET)
model.

16. The non-transitory, computer-readable storage
medium of claim 135, wherein incrementally updating the
MSET model involves adding one or more additional com-
ponents to the MSET model, and using an exponential
forgetting function to adjust weights applied to older com-
ponents 1n the MSET model to reduce contributions of the
older components.

17. The non-transitory, computer-readable storage
medium of claam 16, wherein incrementally updating the
MSET model involves using the Sherman-Morrison-Wood-
bury formula to perform matrix-inversion operations
involved in incrementally updating the MSET model.

18. A system performing prognostic-survelllance opera-
tions based on an inferential model that dynamically adapts
to evolving operational characteristics of a monitored asset,

comprising;
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at least one processor and at least one associated memory;

and

an execution mechanism that executes on the at least one

processor, wherein during a surveillance mode, the

execution mechanism:

receives a set of time-series signals gathered from
sensors 1n the monitored asset;

uses an inferential model to generate estimated values
for the set of time-series signals;

performs a pairwise diflerencing operation between
actual values and the estimated values for the set of
time-series signals to produce residuals;

performs a sequential probability ratio test (SPRT) on
the residuals to produce SPRT alarms;

when a tripping frequency of the SPRT alarms exceeds
a threshold value, which 1s indicative of an incipient
anomaly 1n the monitored asset, triggers an alert; and

while the prognostic-surveillance system 1s operating
in the surveillance mode, incrementally updates the
inferential model based on the time-series signals,
wherein 1incrementally updating the inferential
model includes at least one of:
adding one or more additional weighted components

to the inferential model; and
adjusting weights to older components in the infer-
ential model to reduce contributions of the older

components; and
alter one or more incremental updates have been
applied to the inferential model, swaps the updated
inferential model with a retrained model that was
retrained during the surveillance mode based on a set
of time-series signals including recently gathered

time-series signals.
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