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(57) ABSTRACT

The disclosed embodiments relate to a system that automati-
cally adapts a prognostic-surveillance system to account for
aging phenomena in a monitored system. During operation,
the prognostic-surveillance system 1s operated 1n a surveil-
lance mode, wherein a trained inferential model 1s used to
analyze time-series signals from the monitored system to
detect incipient anomalies. During the surveillance mode,
the system periodically calculates a reward/cost metric asso-
ciated with updating the trained inferential model. When the
reward/cost metric exceeds a threshold, the system swaps
the tramned inferential model with an updated inferential
model, which 1s trained to account for aging phenomena in
the monitored system.
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RECEIVE NEW TIME-SERIES SIGNALS
GATHERED FROM SENSORS IN THE
MONITORED SYSTEM
302

DURING A TRAINING MODE, RECEIVE
TRAINING DATA COMPRISING TIME-SERIES

SIGNALS GATHERED FROM SENSORS IN
THE MONITORED SYSTEM DURING
NORMAL FAULT-FREE OPERATION

202

USE THE INFERENTIAL MODEL TO
GENERATE ESTIMATED VALUES FOR THE
SET OF TIME-SERIES SIGNALS BASED ON

DIVIDE THE TRAINING DATA INTO A
TRAINING SET AND A VALIDATION SET
204

THE NEW TIME-SERIES SIGNALS
304

PERFORM A PAIRWISE DIFFERENCING
OPERATION BETWEEN ACTUAL VALUES
AND THE ESTIMATED VALUES FOR THE

SET OF TIME-SERIES SIGNALS TO
PRODUCE RESIDUALS
306

USE THE TRAINING SET TO TRAIN THE
INFERENTIAL MODEL TO PREDICT VALUES
FOR THE TIME-SERIES SIGNALS AND ALSO
TEST THE INFERENTIAL MODEL BASED ON

THE VALIDATION SET
206

PERFORM A SPRT ON THE RESIDUALS TO
PRODUCE SPRT ALARMS HAVING
ASSOCIATED TRIPPING FREQUENCIES
308

END

FIG. 2

DETECT INCIPIENT ANOMALIES BASED ON
THE TRIPPING FREQUENCIES

310

END

FIG. 3
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OPERATE THE PROGNOSTIC-
SURVEILLANCE SYSTEM IN A
SURVEILLANCE MODE, WHEREIN A
TRAINED INFERENTIAL MODEL IS USED TO
ANALYZE TIME-SERIES SIGNALS FROM
THE MONITORED SYSTEM TO DETECT
INCIPIENT ANOMALIES
602

DURING THE SURVEILLANCE MODE,
PERIODICALLY CALCULATE A REWARD/

COST METRIC ASSOCIATED WITH
UPDATING THE TRAINED INFERENTIAL
MODEL
604

WHEN THE REWARD/COST METRIC
EXCEEDS A THRESHOLD, SWAP THE
TRAINED INFERENTIAL MODEL WITH AN
UPDATED INFERENTIAL MODEL, WHICH IS
TRAINED TO ACCOUNT FOR AGING
PHENOMENA IN THE MONITORED SYSTEM
606

END
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1

AUTOMATICALLY ADAPTING A
PROGNOSTIC-SURVEILLANCE SYSTEM TO
ACCOUNT FOR AGE-RELATED CHANGES
IN MONITORED ASSETS

BACKGROUND

Field

The disclosed embodiments generally relate to techniques
for using machine-learning (ML) models to perform prog-
nostic-surveillance operations based on time-series sensor
signals from monitored assets. More specifically, the dis-
closed embodiments relate to a technique for automatically
adapting an ML-based prognostic-surveillance system to
account for age-related changes 1n monitored assets.

Related Art

Large numbers of sensors are presently being deployed to
monitor the operational health of critical assets in a large
variety ol business-critical systems. For example, a medium-
sized computer data center can include over 1,000,000
sensors monitoring thousands of servers, a modern passen-
ger jet can include 75,000 sensors, an o1l refinery can include
over 1,000,000 sensors, and even an ordinary car can have
over 100 sensors. These sensors produce large volumes of
time-series sensor data, which can be used to perform
prognostic-surveillance operations to facilitate detecting
incipient anomalies. This makes 1t possible to take remedial
action before the incipient anomalies develop into failures 1n
the monitored assets.

ML-based prognostic-surveillance techniques typically
operate by tramning an ML model (also referred to as an
“inferential model™) to learn correlations among time-series
signals. The tramned ML model 1s then placed 1n a surveil-
lance mode where 1t used to predict values for time-series
signals based on the correlations with other time-series
signals, wherein deviations between actual and predicted
values for the time-series signals trigger alarms that indicate
an 1ncipient anomaly. This makes 1t possible to perform
remedial actions before the underlying cause of the incipient
anomaly leads to a catastrophic failure.

ML-based prognostic-surveillance techniques operate by
learning patterns in signals when there 1s no degradation
present in the monitored assets, and subsequently detecting,
anomalies 1n those patterns during normal system operation.
A challenge arises 1n use cases where the assets under
survelllance experience aging phenomena during the life-
time of the assets, especially when the aging mechanisms
result 1n changes 1n correlations among the monitored sig-
nals. For such use cases, where the aging of assets 1s normal
and expected and 1s not indicative of impending failures,
there 1s often a problem associated with nuisance alarms,
which are triggered because aging mechanisms in the assets
cause changes 1n the correlations among time-series signals
from the assets.

Machines and complex systems typically evolve over
time, and 1t 1s naive to assume that the machines and
complex systems will always behave according to unchang-
ing patterns. This 1s because machines and complex systems
adapt and evolve 1n numerous ways. For example, machines
wear out or can be upgraded. Hence, 1t 1s desirable to
provide a prognostic-surveillance system that can adapt to
changing characteristics of monitored assets, particularly 1n
cases where the changes are concomitant with normal,
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expected aging phenomena for the monitored assets, and
there exist no anomalies or degradation in those assets.

A number of “adaptive” analytical systems have been
developed 1n the past. For example, feedback control (FC)
theory 1s a well-established engineering discipline, and there
exist adaptive FC systems that modily feedback parameters
when necessary to achieve a specific goal. An even more
claborate adaptation technique involves completely restruc-
turing the FC system, not just the feedback parameters. At
the same time, machine-learning (ML) techmiques have
greatly improved in recent years and are finding many new
applications. However, ML techniques are not vet capable of
“autonomous adaptation.” A conventional ML technique
presumes that there exists a collection of data (usually a very
large collection), which 1s available for training an ML
model. After the ML model 1s trained, 1t can be used to make
decisions based on new data.

Most conventional ML techniques can only adapt by
training a new model. Some ML techniques, such as rein-
forcement learning, explicitly modily the ML model 1n
response to feedback. However, reinforcement learning still
presumes that the associated monitored asset operates
according to a fixed behavior. This can be problematic
because the monitored asset’s behavior may change or
evolve over time due to age-related processes.

Hence, what 1s needed 1s a prognostic-surveillance system
that adapts to age-related changes in monitored assets.

SUMMARY

The disclosed embodiments relate to a system that auto-
matically adapts a prognostic-surveillance system to account
for aging phenomena 1n a momtored system. During opera-
tion, the prognostic-surveillance system 1s operated i a
survelllance mode, wherein a trained inferential model 1s
used to analyze time-series signals from the monitored
system to detect incipient anomalies. During the surveil-
lance mode, the system periodically calculates a reward/cost
metric associated with updating the tramned inferential
model. When the reward/cost metric exceeds a threshold, the
system swaps the trained inferential model with an updated
inferential model, which 1s trained to account for aging
phenomena in the monitored system.

In some embodiments, operating the prognostic-surveil-
lance system 1n the surveillance mode mvolves: (1) using the
trained inferential model to generate estimated values for the
time-series signals from the monitored system based on
cross-correlations between the time-series signals; (2) per-
forming pairwise diflerencing operations between actual
values and the estimated values for the time-series signals
set to produce residuals; and (3) analyzing the residuals to
detect the incipient anomalies 1 the monitored system.

In some embodiments, analyzing the residuals mvolves:
performing a sequential probability ratio test (SPRT) on the
residuals to produce SPRT alarms; and detecting the incipi-
ent anomalies based on the SPRT alarms.

In some embodiments, the reward/cost metric balances an
advantage gained by swapping the trained inferential model
against a cost associated with the swapping operation.

In some embodiments, the advantage gained by swapping
the trained mierential model 1includes: reducing a number of
false alarms that can possibly take the monitored asset out of
service; and increasing a sensitivity of the prognostic-
survelllance system associated with detecting new degrada-
tion modes.
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In some embodiments, the cost associated with the swap-
ping operation includes model-retraining costs and model-
swapping costs.

In some embodiments, during a preceding training mode,
the system runs the monitored system in a programmable
environmental testing chamber to produce training data.
Next, the system uses the traiming data to parametrically
train the inferential model across a range of ambient con-
ditions with 1nput from a subject matter expert, so that the
trained inferential model 1s able to discriminate between
normal aging phenomena and degradation modes that lead to
system failure.

In some embodiments, during a preceding training mode,
the system uses age-specific data historian files, which
contain time-series signals for similar monitored systems
during different stages in life-cycles of the similar systems,
to train a set of age-specific inferential models for the
monitored system, wherein each trained age-specific infer-
ential model 1s associated with different age-specific opera-
tional characteristics of the monitored system.

In some embodiments, when the prognostic-surveillance
system detects an incipient anomaly 1n the monitored sys-
tem, a servicing operation 1s performed on the monitored
system to remediate the anomaly.

In some embodiments, performing the servicing operation
comprises one of the following: performing an airtflow-
reversal operation to remove accumulated dust from com-
ponents 1n a coal-fired power plant; replacing one or more

blades 1n a metal stamping press; and replacing cooling fans
in an enterprise computing system.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 illustrates an exemplary prognostic-surveillance
system 1n accordance with the disclosed embodiments.

FIG. 2 presents a flow chart illustrating a process for
training an inferential model 1n accordance with the dis-
closed embodiments.

FIG. 3 presents a flow chart illustrating a process for using
an inferential model to perform prognostic-surveillance
operations 1n accordance with the disclosed embodiments.

FI1G. 4 illustrates a prognostic-surveillance system with a
restructurable adaptive controller in accordance with the
disclosed embodiments.

FIG. 5 presents a diagram of an adaptable MSET system
for a datacenter use case in accordance with the disclosed
embodiments.

FIG. 6 presents a flow chart illustrating a process for
automatically adapting a prognostic-surveillance system to
account for aging phenomena 1 a momtored system 1in
accordance with the disclosed embodiments.

DETAILED DESCRIPTION

The following description 1s presented to enable any
person skilled in the art to make and use the present
embodiments, and 1s provided 1n the context of a particular
application and 1ts requirements. Various modifications to
the disclosed embodiments will be readily apparent to those
skilled 1n the art, and the general principles defined herein
may be applied to other embodiments and applications
without departing from the spirit and scope of the present
embodiments. Thus, the present embodiments are not lim-
ited to the embodiments shown, but are to be accorded the
widest scope consistent with the principles and features
disclosed herein.
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The data structures and code described 1n this detailed
description are typically stored on a computer-readable
storage medium, which may be any device or medium that
can store code and/or data for use by a computer system. The
computer-readable storage medium includes, but 1s not
limited to, volatile memory, non-volatile memory, magnetic
and optical storage devices such as disk drives, magnetic
tape, CDs (compact discs), DVDs (digital versatile discs or
digital video discs), or other media capable of storing
computer-readable media now known or later developed.

The methods and processes described in the detailed
description section can be embodied as code and/or data,
which can be stored in a computer-readable storage medium
as described above. When a computer system reads and
executes the code and/or data stored on the computer-
readable storage medium, the computer system performs the
methods and processes embodied as data structures and code
and stored within the computer-readable storage medium.
Furthermore, the methods and processes described below
can be included in hardware modules. For example, the
hardware modules can include, but are not limited to,
application-specific integrated circuit (ASIC) chips, field-
programmable gate arrays (FPGAs), and other program-
mable-logic devices now known or later developed. When
the hardware modules are activated, the hardware modules
perform the methods and processes included within the
hardware modules.

Exemplary Prognostic-Surveillance System

Belore describing the adaptive prognostic-surveillance
system further, we first describe an exemplary non-adaptive
MSET-based prognostic-surveillance system. FIG. 1 1llus-
trates an exemplary non-adaptive prognostic-surveillance
system 100 that accesses a time-series database 106, con-
taining time-series signals 1n accordance with the disclosed
embodiments. As illustrated 1n FIG. 1, prognostic-surveil-
lance system 100 operates on a set ol time-series sensor
signals 104 obtained from sensors i a monitored system
102. Note that monitored system 102 can generally include
any type ol machinery or facility, which includes sensors
and generates time-series signals. Moreover, time-series
signals 104 can originate from any type of sensor, which can
be located 1n a component 1n monitored system 102, includ-
ing: a voltage sensor; a current sensor; a pressure sensor; a
rotational speed sensor; and a vibration sensor.

During operation of prognostic-surveillance system 100,
time-series signals 104 can feed into a time-series database
106, which stores the time-series signals 104 for subsequent
analysis. Next, the time-series signals 104 either feed
directly from momtored system 102 or from time-series
database 106 into a multivariate state estimation technique
(MSET) pattern-recognition model 108. Although it 1s
advantageous to use an inferential model, such as MSET, for
pattern-recognition purposes, the disclosed embodiments
can generally use any one of a generic class of pattern-
recognition techniques called nonlinear, nonparametric
(NLNP) regression, which includes neural networks, sup-
port vector machines (SVMs), auto-associative Kkernel
regression (AAKR), and even simple linear regression (LR).

Next, MSET model 108 1s “trained” to learn patterns of
correlation among all of the time-series signals 104. This
training process involves a one-time, computationally 1nten-
sive computation, which 1s performed oflfline with accumu-
lated data that contains no anomalies. The pattern-recogni-
tion system 1s then placed mto a “real-time surveillance
mode,” wherein the trained MSET model 108 predicts what
cach signal should be, based on other correlated variables;
these are the “estimated signal values” 110 1llustrated in
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FIG. 1. Next, the system uses a difference module 112 to
perform a pairwise diflerencing operation between the actual
signal values and the estimated signal values to produce
residuals 114. The system then performs a “detection opera-
tion” on the residuals 114 by using SPRT module 116 to
detect anomalies and possibly to generate an alarm 118. (For

a description of the SPRT model, please see Wald, Abraham,
June 1945. “Sequential Tests of Statistical Hypotheses.”

Annals of Mathematical Statistics. 16 (2): 117-186.) In this

way, prognostic-surveilllance system 100 can proactively
alert system operators to incipient anomalies, such as
impending failures, hopefully with enough lead time so that
such problems can be avoided or proactively fixed.

The prognostic surveillance system 100 1llustrated 1n FIG.
1 operates generally as follows. During a training mode,
which 1s illustrated 1n the flow chart 1n FIG. 2, the system
receives a traming set comprising time-series signals gath-
ered from sensors in the monitored system under normal
tault-free operation (step 202). Next, the system divides the
training data into a traming set and a validation set (step
204). The system then trains the inferential model to predict
values of the time-series signals based on the training set,
and also tests the inferential model based on the validation
set (step 206). During a subsequent surveillance mode,
which 1s 1llustrated by the flow chart in FIG. 3, the system
receives new time-series signals gathered from sensors in
the monitored system (step 302). Next, the system uses the
inferential model to generate estimated values for the set of
time-series signals based on the new time-series signals
(step 304). The system then performs a pairwise diflerencing
operation between actual values and the estimated values for
the set of time-series signals to produce residuals (step 306).
The system then analyzes the residuals to detect the incipient
anomalies 1 the monitored system. This involves performs-
ing a SPRT on the residuals to produce SPRT alarms with
associated tripping frequencies (step 308), and then detect-
ing incipient anomalies based on the tripping frequencies
(step 310). Note that these incipient anomalies can be
associated with an impending failure of the monitored
system, or a malicious-intrusion event in the monitored
system.

Discussion

The disclosed system provides a new approach to prog-
nostic surveillance, wherein an ML-based momitoring tech-
nique generates and continuously updates a reward/cost
metric. As 1s 1llustrated in FI1G. 4, this reward/cost metric 1s
monitored by a restructurable adaptive (RA) controller 402,
which 1s implemented 1n an “external loop” from the pri-
mary ML-based execution path, which 1s performing moni-
toring operations to detect prognostic anomalies. This exter-
nal RA controller makes decisions about when to
autonomously update the inferential model used by the
prognostic-surveillance system. For such updates, the RA
controller swaps 1n a new training module for the age-
specific performance of the monitored asset. This swapping
process can take place quickly (in the background, between
time steps for the prognostic-surveillance system).

Our new “adaptable MSET” (AMSET) technique
achieves an extremely high prognostic accuracy throughout
the lifetime of the monitored assets while attempting to
mimmize downtime, thereby significantly reducing overall
operational and maintenance costs. (Although the specific
adaptive ML techmque used 1n the disclosed embodiments
1s based on the Multivariate State Estimation Technique
(MSET), other multivariate ML techniques can also be
modified to be adaptive.)
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The RA controller 402 illustrated 1n FIG. 4 seeks to
update the model at optimal times when changes in the
monitored assets are consistent with aging effects. This new
R A-controller-based techmique for ML-based prognostic
survelllance provides two main advantages: (1) 1t largely
climinates false alarms resulting from normal aging phe-
nomena; and (2) 1t facilitates extremely high sensitivity for
detecting new degradation modes 1 aging systems. (In
contrast, prior art systems had to “loosen their thresholds™ so
as not to trigger false alarms caused by aging phenomena,
which makes the prior art systems less sensitive to detecting,
new degradation modes.)

There exist a number of use cases 1 which the use of
ML-based prognostics 1s problematic because of “aging
related” changes 1n the state of the monitored assets. Service
personnel do not like to receive prognostic alerts from the
“anomaly detection” techniques, which cause them to shut
down a revenue-generating asset to perform servicing opera-
tions only to discover that the prognostic alerts were caused
by normal aging of the asset, and not by an actual degra-
dation mechanism potentially leading to system failure.

We now provide three examples from different industries
in which the new AMSET approach can eflectively deal with
the challenges of applying ML-based prognostics to moni-
tored assets that change their signal correlation patterns due
to known aging mechanisms.

Dust Fouling in Flow Channels for Utility Coal Plants

A typical coal-fired power plant consumes large volumes
of coal each day. This large volume of coal requires enor-
mous volumes of airflow (typically exceeding 1 million
cubic-feet per minute) to ensure eflicient oxidation 1n a large
combustion chamber. Because the large volume of coal 1s
first pulverized into a powder to facilitate eflicient combus-
tion, there 1s a lot of dust buildup in flow channels and
spacer-grids located on the upstream side of the combustion
chamber, and buildup of flue-ash deposits in flow channels
located on the downstream side of the combustion chamber.
This dust buildup causes flow impedance, which steadily
increases throughout the day. This dust buildup also causes
airflow pumping requirements to increase throughout the
day, which diminishes overall plant energy efliciency.

To “rejuvenate” the flow channels and restore air-inlet
flow velocities on the inlet side of the combustion chamber
and flue-gas exhaust flow velocities on the outlet side, 1t 1s
necessary to periodically (e.g., once every 6-9 hours) shut
down the combustion process and reverse the fans. The large
reverse airflow blows the accumulated dust-dross off of the
metal grills, spacer-grids and other components, which
restores normal airflow efliciency throughout the system.
However, the flow-reversal process comes with a cost
because the combustion must be shut down for several
minutes. On the other hand, performing the flow-reversal
process too iirequently also has a cost due to increased
pumping elflort, and from diminished air flow rates that
cause lower-efliciency combustion.

The decision about when to reverse the airtlow presently
depends on human operators, who watch flow-rate gauges
and pressure gauges associated with the combustion cham-
ber, and combustion temperatures that provide an indirect
measure of combustion efliciency, and then make a subjec-
tive decision to the reverse the airflow. However, the human
subjectivity mvolved in deciding how frequently to reverse
the airflow causes measurable variations 1n overall coal-
plant efliciency.

Some newer coal plants use ML-based techniques to
minimize the human subjectivity involved in picking the
best times to reverse airtlow. This 1s definitely an improve-




US 11,782,429 B2

7

ment, but these existing ML-based techniques have short-
comings. As the overall airflow 1impedance increases mono-
tonically throughout the day, this “rapid-aging” process
deteriorates air and exhaust flow rates and diminishes com-
bustion efliciency. This means that an ML-based prognostic
technique, which 1s deployed to monitor multiple sensors
throughout the coal plant to detect the onset of degradation
in various components (or 1n associated sensors), has to
accommodate a monotonic deterioration 1n the multivariate
relationships among the monitored variables as the aging
process progresses throughout the day.

If an ML-based technique 1s trained on time-series signals
from the momitored asset immediately after a “rejuvenation™
event, when conditions are close to i1deal, then anomaly-
detection alarms will be triggered over time as air and
exhaust flow rates diminish, combustion efliciency sulilers,
temperatures decrease, and associated steam-generation
rates decline. Hence, the ML-based prognostic-surveillance
technique must be adjusted to have looser sensitivity so that
it does not trigger alarms during the normal aging and
regenerating cycles.

Our new system provides a better approach for ML
prognostics by maintaining near-optimal anomaly detection
sensitivity throughout the aging and regenerating cycles. We
do this by training separate inierential models for: (1) a
newly rejuvenated plant condition; (2) a dirty-plant condi-
tion where the airtlow and exhaust-tflow impedances reach
maximum values, and (3) other conditions between these
two extremes.

Our new system starts with an 1nitial trained model that
provides optimal prognostics at the beginning of a cycle
(right after a flow-reversal event), and then updates the
model throughout the operating cycle of the plant (as dust
buildup diminishes the flow rates) until the next rejuvenation
flow-reversal operation 1s conducted. This new approach,
which incrementally updates the tramned model from a
library of stored trained models, facilitates near-optimal
anomaly detection sensitivity throughout the aging and
regeneration cycles.

Advanced Manufacturing Metal Stamping Operations

Metal stamping operations are commonly performed in
various manufacturing industries. These metal stamping
operations make use of dies and stamping presses to trans-
form sheet metal (through a cold-forming process) into
shapes needed for metal parts, which are assembled into
components and subsystems.

Metal stamping systems resemble automated “cookie-
cutters,” which stamp out metal parts at very high rates (up
to 1,500 strokes per minute) on a 24/7 basis. When a
high-capacity metal stamping press breaks down, it can
cause a costly disruption for an associated manufacturing
process. Fortunately, ML-based prognostic-surveillance
techniques can be used to proactively detect anomalies in
assets and associated sensors 1 a manufacturing plant.
However, 1t can be challenging to use these prognostic-
surveillance techniques because there exists a rapid aging
process for metal stamping machines that gradually deterio-
rates the performance of associated metal stamping opera-
tions.

This aging process has to do with the sharpness versus
dullness of the dies that are used to cut the metal into parts.
When a metal stamping press starts with brand new dies, the
high capacity motors that drive the press cycles encounter
only modest resistance during the stroke cycle, and the
resulting stamped parts have very smooth edges, which 1s
desirable 1n subsequent phases of the associated manufac-
turing and assembly process.
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However, with up to 1,500 strokes per minute, the “sharp-
ness” of the die blades degrades throughout the day. As the
die blades become increasingly more dull, a gradually
increasing amount of force i1s required with every stroke
cycle of the press. This also causes a deterioration 1n the
quality of the stamped components, because of burrs on
edges of the components. This monotonic aging process can
cause accelerated failure rates for expensive metal stamping
assets; this causes downtime while increasing costly “scrap
rates” for stamped parts with burrs and other impertections.
Note that there also exists a cost for stopping manufacturing
throughput to swap dull die blades for sharp ones. However,
the cost can be larger 1f swaps are delayed, which increases
the likelihood of failure of the stamping machine and
clevates scrap rates.

If we train the ML model to monitor sensors immediately
alter new sharp dies are installed, then the correlations
among the resulting time-series signals change during the
aging process. Hence, the ML-based prognostic-surveillance
technique must be adjusted to have looser sensitivity, so that
it does not trigger alarms due to the normal aging and
regenerating cycles that occur as the die blades become dull.

A much better approach for ML prognostics, which main-
tains near-optimal anomaly detection sensitivity throughout
the aging and regenerating cycles, 1s to train multiple
inferential models: one model for a new, sharp die condition,
one model for a dull die condition, and multiple models for
other intermediate conditions. As the aging phenomena
progresses and the dullness of the die blades increases, our
system swaps 1n new pre-tramned modules. (Note that train-
ing operations for inferential models are quite time-consum-
ing, whereas a pre-trained model can be swapped 1n almost
instantancously.) By swapping in new inferential models as
aging progresses, our new adaptable ML-based prognostic-
survelllance system maintains high sensitivity for detecting
the onset of new degradation modes 1n the assets and
associated sensors throughout the aging cycles that are
characteristic of high-throughput metal stamping operations.
Feedback-Control Mechanism for Cooling a Datacenter

As a complex asset ages, a number of factors can cause an
associated air-based or flmid-based cooling system to
become less eflicient. FIG. 5 presents an illustrative use case
for AMSET 1n a cooling system for datacenter assets.
Existing ML-based prognostic surveillance techniques 1n a
datacenter operate by training an inferential model MSET
when a server 1s new. This trained inferential model 1s
subsequently used to perform monitoring operations
throughout the life of the server. However, servers can last
a number of years and there exist various aging mechanisms
in mechanical systems associated with servers that can cause
the efliciency of associated “temperature capping’ tech-
niques to deteriorate.

Temperature capping techniques are used in datacenters
where there exist components, such as CPUs, that cannot
exceed a maximum temperature (e.g., 85° C.) for rehability
reasons. Otherwise, i this maximum temperature 1s
exceeded, the system will trigger a “thermal shutdown™ to
protect internal components. In this type of system, a
prognostic-surveillance system 1s used to detect anomalies
and send associated service alerts, and otherwise adjust fan
speeds to maintain internal CPU temperatures below the 85°
C. maximum temperature (hence, the term “temperature
capping’).

The problem with conventional prognostic-surveillance
techniques 1s that an inferential model 1s trained on a new
system, but mechanical aging phenomena gradually creep 1n
with age and deteriorate the overall energy efliciency for
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older versus newer assets. These aging phenomena also
change the correlation patterns among the time-series sig-
nals that conventional prognostic-surveillance systems use
to detect anomalous behavior.

For cooling systems in enterprise computing systems, 3
examples of the internal aging phenomena include: (1)
mechanical wear that causes bearing out-of-roundness 1n fan
motors, which increases iriction; (2) dust buildup on heat-
sink fins that reduces thermal dissipation etliciency; (3)
gradual lubrication dry-out 1n rotating fan assemblies that 10
causes Iriction; and (4) gaskets and O-rings that gradually
deteriorate with age, which accelerates warm-air/cool-air
leakage mechanisms 1n high-flow channels and thereby
diminishes overall cooling efliciency.

Note that none of these normal aging mechanisms 1s an 15
indication that the server 1s undergoing degradation that will
lead to a failure. However, if an inferential model 1s trained
on a new system, anomaly alarms will be generated as a
result of these aging mechanisms, and these alarms can take
revenue-generating assets out of service unnecessarily. 20
Moreover, unnecessary service requests can be generated,
which can lead to costly and unnecessary service actions.

Our new adaptive prognostic-surveillance system (illus-
trated 1 FIG. 5) reduces these availability and servicing
costs by proactively discriminating between normal aging 25
phenomena and system degradation events, and autono-
mously “swapping in” updated age-specific inferential mod-
cls at appropriate times throughout the life of the assets
under surveillance, thereby mitigating the above-described
problems. 30

In some embodiments, our new adaptable MSET tech-
nique 1s incorporated ito a soltware module, which 1s
“insertable” 1mto an existing ML framework within a data-
center or cloud computing system. By saying this software
module 1s “insertable,” we mean that the software module 35
can be easily uploaded and/or patched 1in an existing ML
framework—as opposed to having to totally replace the ML
software simply to upgrade to AMSET capabilities. In this
way, our new adaptable MSET techmique can be easily
deployed 1n such systems. 40

In this datacenter use case, our system maintains a library
ol pre-trained inferential age-specific models (not just one
ML model that was trained on a new asset). This library of
pre-trained age-specific models can be populated using one
of the following two techniques. 45

For new assets that are the “first ever” make and model of
the asset (for which there are no aged assets in the field),
parametric training can be conducted 1 a programmable
environmental testing chamber. This makes 1t possible to
provide exhaustive parametric coverage for all possible 50
ambient conditions (e.g., ambient temperatures, vibration
levels, relative humidity levels, atmospheric pressures, and
altitudes). Note that for air-cooled and fluid-cooled assets,
all of these ambient conditions affect operating and pertor-
mance efliciency. By systematically training our prognostic- 55
survelllance system over all possible permutations and com-
binations of ambient conditions, while simultaneously
exercising the asset through 1ts full performance range, our
prognostic-surveillance system learns the “state” of the asset
over all possible conditions. In this way, our new prognostic- 60
survelllance system can become robust with respect to
discriminating between normal aging phenomena and the
onset of degradation mechanisms.

For older assets, which have been 1n service for a period
of time, we can produce a library of trained age-specific 65
models that can be periodically swapped 1n as the asset ages.

As the population of assets in the field reaches the age of

10

one-month, two-months, . . . , one-year, two-years 1n
“power-on hours” (POH), the associated telemetry 1s con-
tinuously stored 1n a master database of age-specific data
historian files, which are continuously analyzed and labeled
for assets that experience no serviceability problems. Telem-
etry from this data historian database can be used to build a
comprehensive library of “age-specific” trained inierential
models. Note that training “compute cost” overhead 1s of no
concern here, because all of the training computations can be
conducted ofl-line in the background.

Over time, this training process builds up a highly popu-
lated “logical tleet” of pre-trained ML models associated
with non-degraded-but-aged assets. Referring to FIG. 5, RA
controller 502 starts by operating on a newly installed asset.
During operation, 1t tracks the “inferred age™ of the moni-
tored asset and swaps in an appropriate pre-trained age-
specific model from the library as the age of the monitored
asset evolves over time.

Our new system 1s the first aging-robust ML-based prog-
nostic-surveillance system that provides “age-aware™ prog-
nostics throughout the lifetime of a monitored asset by using
a restructurable adaptive controller to autonomously adapt
the prognostics to the age of the monitored asset. In this way,
our new system ensures high sensitivity for detecting incipi-
ent anomalies by disambiguating degradation alerts from
normal aging phenomena throughout the life of the moni-
tored asset.

Process of Producing Synthetic Signals

FIG. 6 presents a tflow chart illustrating a process for
automatically adapting a prognostic-surveillance system to
account for aging phenomena 1n a monitored system 1n
accordance with the disclosed embodiments. During opera-
tion, the prognostic-surveillance system 1s operated i a
survelllance mode, wherein a trained inferential model 1s
used to analyze time-series signals from the monitored
system to detect incipient anomalies (step 602). During this
surveilllance mode, the system periodically calculates a
reward/cost metric associated with updating the trained
inferential model (step 604). When the reward/cost metric
exceeds a threshold, the system swaps the trained inferential
model with an updated inferential model, which 1s trained to
account for aging phenomena 1n the monitored system (step
606).

Various modifications to the disclosed embodiments will
be readily apparent to those skilled in the art, and the general
principles defined herein may be applied to other embodi-
ments and applications without departing from the spirit and
scope of the present invention. Thus, the present invention
1s not limited to the embodiments shown, but 1s to be
accorded the widest scope consistent with the principles and
features disclosed herein.

The foregoing descriptions of embodiments have been
presented for purposes of illustration and description only.
They are not intended to be exhaustive or to limit the present
description to the forms disclosed. Accordingly, many modi-
fications and varniations will be apparent to practitioners
skilled 1n the art. Additionally, the above disclosure 1s not
intended to limit the present description. The scope of the
present description 1s defined by the appended claims.

What 1s claimed 1s:

1. A method for automatically adapting a prognostic-
survelllance system to account for aging phenomena 1n a
monitored system, the prognostic-surveillance system com-
prising one or more machine-learning models, the method
comprising;
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receiving time-series signals associated with measure-
ments obtained at one or more sensors 1n the monitored
system;
analyzing, using a trained inferential machine-learning
model, the time-series signals to detect incipient
anomalies associated with the monitored system;

periodically determining a reward/cost metric associated
with using an additional traimned inferential machine-
learning model trained to account for aging phenomena
in the monitored system;

responsive to determiming that the reward/cost metric

exceeds a threshold, using the additional trained infer-
ential machine-learning model to account for one or
more aging phenomena in the monitored system:;
using the additional trained inferential machine-learning
model 1n the prognostic-surveillance system;
detecting, by the prognostic-surveillance system and
using the additional trained inferential learning model,
an incipient anomaly 1n the monitored system; and
in response to the detecting, performing a servicing opera-
tion on the monitored system to remediate the incipient
anomaly.

2. The method of claim 1, wherein the method further
COmMprises:

using the tramned inferential machine-learning model to

generate estimated values for the time-series signals
from the monitored system based on cross-correlations
between the time-series signals;

performing pairwise diflerencing operations between

actual values and the estimated values for the time-
series signals set to produce residuals; and

analyzing the residuals to detect the incipient anomalies in

the monitored system.

3. The method of claim 2, wherein analyzing the residuals
involves:

performing a sequential probability ratio test (SPRT) on

the residuals to produce SPRT alarms; and

detecting the incipient anomalies based on the SPRT

alarms.

4. The method of claim 1, wherein the reward/cost metric
balances an advantage gained by swapping the trained
inferential machine-learning model against a cost associated
with the swapping.

5. The method of claim 4,

wherein the advantage gained by swapping the trained

inferential machine-learning model 1ncludes: reducing
a number of false alarms that can possibly take the
monitored system out of service; and increasing a
sensitivity of the prognostic-surveillance system asso-
ciated with detecting new degradation modes; and
wherein the cost associated with the swapping the trained
inferential machine-learning model with the additional
trained inferential machine-learming model includes
model-retraining costs and model-swapping costs.

6. The method of claim 1, wherein the method further
COmMprises:

running the monitored system in a programmable envi-

ronmental testing chamber to produce training data;
and

using the traiming data to parametrically train the infer-

ential machine-learning model across a range of ambi-
ent conditions with mput from a subject matter expert,
so that the trained inferential machine-learming model
1s able to discriminate between normal aging phenom-
ena and degradation modes that lead to system failure.

7. The method of claim 1, wherein the method further

comprises training a set of age-specific machine-learning
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inferential models for the monitored system using age-
specific data historian files, which contain time-series sig-
nals for similar monitored systems during different stages in
life-cycles of the similar monitored systems, wherein each
trained age-specific inferential machine-learning model 1s
associated with different age-specific operational character-
istics of the monitored system.

8. The method of claim 1, wherein performing the ser-
vicing operation comprises one or more of the following:

performing an airflow-reversal operation to remove accu-

mulated dust from components 1n a coal-fired power
plant;

replacing one or more blades 1n a metal stamping press;

and

replacing cooling fans 1n an enterprise computing system.

9. The method of claim 1, wherein periodically determin-
ing the reward/cost metric and selectively swapping the
trained inferential machine-learning model are performed by
an msertable software module that can be easily inserted into
an existing ML framework without having to replace an
entire ML framework.

10. A non-transitory computer-readable storage medium
storing mstructions that when executed by a computer cause
the computer to perform operations for automatically adapt-
ing a prognostic-surveillance system to account for aging
phenomena 1n a monitored system, the prognostic-surveil-
lance system comprising one or more machine-learning
models, the operations comprising;:

receiving time-series signals associated with measure-

ments obtained at one or more sensors 1n the monitored
system;
analyzing, using a traimned inferential machine-learning
model, the time-series signals to detect incipient
anomalies associated with the monitored system;

periodically determining a reward/cost metric associated
with using an additional trained inferential machine-
learning model trained to account for aging phenomena
in the monitored system;

responsive to determining that the reward/cost metric

exceeds a threshold, using with the additional trained
inferential machine-learning model to account for one
or more aging phenomena in the monitored system:;
using the additional trained inferential machine-learning
model 1n the prognostic-surveillance system;
detecting, by the prognostic-surveillance system and
using the additional trained inferential learning model,
an incipient anomaly 1n the monitored system; and
in response to the detecting, performing a servicing opera-
tion on the monitored system to remediate the incipient
anomaly.

11. The non-transitory computer-readable storage
medium of claim 10, wherein the operations further com-
Prises:

using the trained inferential machine-learning model to

generate estimated values for the time-series signals
from the monitored system based on cross-correlations
between the time-series signals;

performing pairwise diflerencing operations between

actual values and the estimated values for the time-
series signals set to produce residuals; and

analyzing the residuals to detect the incipient anomalies 1n

the momitored system.

12. The non-transitory computer-readable storage
medium of claim 11, wherein analyzing the residuals
involves:

performing a sequential probability ratio test (SPRT) on

the residuals to produce SPRT alarms; and
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detecting the incipient anomalies based on the SPRT

alarms.

13. The non-transitory computer-readable storage
medium of claim 10, wherein the reward/cost metric bal-
ances an advantage gained by swapping the trained infer-
ential machine-learming model against a cost associated with
the swapping.

14. The non-transitory
medium of claim 13,

wherein the advantage gained by swapping the trained

inferential machine-learning model 1ncludes: reducing
a number of false alarms that can possibly take the
monitored system out of service; and increasing a
sensitivity of the prognostic-surveillance system asso-
ciated with detecting new degradation modes; and
wherein the cost associated with the swapping includes
model-retraining costs and model-swapping costs.

15. The non-transitory computer-readable storage
medium of claim 10, wherein the operations further com-
prise:

running the monitored system in a programmable envi-

ronmental testing chamber to produce traiming data;
and

using the traiming data to parametrically train the infer-

ential machine-learning model across a range of ambi-
ent conditions with iput from a subject matter expert,
so that the trained inferential machine-learming model
1s able to discriminate between normal aging phenom-
ena and degradation modes that lead to system failure.

16. The non-transitory computer-readable storage
medium of claim 10, wherein the operations further com-
prise training a set of age-specific machine-learning infer-
ential models for the monitored system using age-specific
data historian files, which contain time-series signals for
similar monitored systems during different stages in life-
cycles of the similar momtored systems, wherein each
trained age-specific inferential model 1s associated with
different age-specific operational characteristics of the
monitored system.

17. The non-transitory computer-readable storage
medium of claim 10, the operations further comprising;:

computer-readable storage
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responsive to detecting the incipient anomaly 1n the
monitored system, performing a servicing operation on
the monmitored system to remediate the anomaly.

18. A prognostic-surveillance system for momitoring a
monitored system, the prognostic-surveillance system com-
prising;:

a non-transitory computer-readable medium storing com-

puter-executable program instructions; and

a processing device communicatively coupled to the
non-transitory computer-readable medium for
executing the computer-executable program instruc-
tions, wherein executing the computer-executable
program 1nstructions configures the processing
device to perform operations comprising;:

receiving time-series signals associated with measure-
ments obtained at one or more sensors 1n the moni-
tored system:;

analyzing, using a trained inferential machine-learning
model, the time-series signals to detect incipient
anomalies associated with the monitored system:;

periodically determining a reward/cost metric associ-
ated with using an additional trained inferential
machine-learning model trained to account for aging,
phenomena in the monitored system;

responsive to determining that the reward/cost metric
exceeds a threshold, using the additional trained
inferential machine-learning model to account for
one or more aging phenomena in the monitored
system:

using the additional trained inferential machine-learn-
ing model 1n the prognostic-surveillance system:;

detecting, by the prognostic-surveillance system and
using the additional trained inferential learning
model, an incipient anomaly in the monitored sys-
tem; and

in response to the detecting, performing a servicing
operation on the monitored system to remediate the
incipient anomaly.

19. The prognostic-surveillance system of claim 18,
wherein the reward/cost metric balances an advantage
gained by swapping the trained inferential machine-learning
model against a cost associated with the swapping.
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