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Abstract

There are many connections among artificial intelligence, learning, reasoning
and ontologies. The Ontology Summit 2017 explored, identified and articulated the
relationships among these areas. As part of the general advocacy of the Ontolog
Forum to bring ontology science and engineering into the mainstream, we endeav-
ored to abstract a conversational toolkit from the Ontology Summit sessions that
may facilitate discussion and knowledge sharing amongst stakeholders concerned
with the topic. Our findings are supported with examples from the various do-
mains of interest. The results were captured in the form of this Communiqué, with
expanded supporting material provided on the web.
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1 Introduction

We are currently witnessing increasingly widespread applications of Artificial Intelli-
gence (AI), which deals with intelligent behavior, learning and adaptation in compu-
tational systems. Three of the most significant drivers and enablers of Al technology
are the availability of increasingly massive amounts of data (Big Data); the rapidly
dropping cost of storing and processing data; and advances in machine learning (ML)
techniques (Wactlar, 2017). This situation has made it possible to exploit sophisticated
ML techniques that require large amounts of data to be effective. The applications
of ML have “boosted Android’s speech recognition, and given Skype Star Trek-like

*Northeastern University, Boston, MA USA

%Hypercube Limited, London, UK

*RDA US Advisory Group, Troy, NY USA

$Hummingbird Design, Chicago, IL USA

"[Engineering Semantics, Fairfax, VA USA

I Senior Enterprise Architect, Elk Grove, CA USA
**National Institute of Standards & Technology, Gaithersburg, MD USA
¥ Nine Points Solutions, Potomac, MD USA



instant translation capabilities. Google is building self-driving cars, and computer sys-
tems that can teach themselves to identify cat videos. Robot dogs can now walk very
much like their living counterparts” (McMillan, 2015, paragraph 4). It is worth noting
that while these may be very useful, they are types of what are called “narrow AI” tech-
nologies. These are Al applications that allow computers to solve specific problems,
like image recognition, or perform reasoning tasks that do not emulate the full range of
human, self-directed, cognitive abilities, which is referred to as “general AI”.

The Ontology Summit 2017 was an attempt to survey the ways in which the Al
techniques of ML, reasoning and ontology engineering are being used for their mutual
benefit. These uses were classified into three tracks, but it was soon clear that the
different tracks had significant overlap with each other, and there was considerable
variety within each track. It was also noted that the terms “reasoning” and “learning”
have many interpretations. In the Ontology Summit, we chose to restrict “learning” to
machine learning because the context of the Summit’s theme was Al. However, human
learning was also explored in the Summit to some extent, especially as it relates to
machine learning. The term “reasoning” was not intended to be restricted to formal,
logical reasoning. In general, the Summit found that classifying the many techniques,
determining the best practices, and identifying synergies among technologies for ML,
reasoning and ontologies have emerged as three key challenges for the exploitation of
the relationships among ML, reasoning and ontology engineering.

Learning
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Figure 1: Ontology Summit 2017 Logo

The Ontology Summit 2017 surveyed the current state of the art among the major
Al topics of learning, reasoning and ontologies with three tracks, summarized in Sec-
tion 2 below. Each track focused on one of the relationships between two of the three
Al topics, as illustrated in the Ontology Summit 2017 logo in Figure 1. The relation-
ship between learning and reasoning was addressed indirectly via ontologies. Some of
the background for the theme of the Ontology Summit is presented in Section 3. This
is followed, in Section 4, by a survey of some of the opportunities and challenges of
the relationships among learning, reasoning and ontologies.

The final publication is available at IOS Press through http://dx.doi.org/10.3233/A0-170191



2 Track Summaries

2.1 Overview Session

The Overview Session began the Ontology Summit with a presentation introducing
many of the themes that were expanded in the track presentations and discussions that
followed. In particular, the overview presented the Ontology Learning Layer Cake in
Figure 2, which was used as a common touchpoint across all of the tracks. The highest
layer represents logic and axioms, with lower layers depicting schemata, relations, con-
cept hierarchies, and synonyms. Terms are at the lowest layer. The layer cake presents
a framework for describing the process of knowledge extraction. An example is the
process of acquiring a concept hierarchy which can be depicted by graphs representing
relationships among elements (Buitelaar, 2017; Getoor, 2017).
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Figure 2: Ontology Learning Layer Cake (Buitelaar, 2017)

2.2 Track A: Using ML to extract knowledge and improve
ontologies

This track addressed one of the big bottlenecks for Al; namely, how to create sufficient
knowledge about the world for a truly intelligent agent. For the most part, knowledge
bases and ontologies for such purposes have been largely handcrafted, which is both
time and resource consuming. This track explored the use of automation and vari-
ous ML approaches to extract knowledge and improve ontologies including populating
them (Berg-Cross, 2017). The following are some of the highlights of the presentations
in this track.

e Bottlenecks due to the complexity of ontology engineering remain a challenge
but a variety of ML approaches and tools, including statistical, linguistic and
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bio-inspired, have been built and can be utilized for a variety of purposes. One
can extract information and structured knowledge from a variety of sources
to facilitate the development and maintenance of ontologies (Buitelaar, 2017,
Corcoglioniti, 2017; Hruschka, 2017). One can filter noisy data to further im-
prove the quality of developed ontologies (Aasman, 2017; Pafilis, 2017). One
can translate linguistic realizations of ontology entities from one language to
another (Buitelaar, 2017).

The ontology learning layer cake provides a conceptual framework for discussion
of what types of knowledge are being built. Automated knowledge development
(such as taxonomy development) should be gauged against manually constructed
knowledge (such as hierarchies) (Buitelaar, Cimiano, & Magnini, 2005).

There has been significant recent progress with supervised learning. Some ap-
proaches to machine learning rely on the accessibility of large amounts of labeled
training data, the creation or curation of which can be resource-intensive, and
time-consuming (Machine learning, 2017). Partly in response to these resource
challenges, there are also complementary, less resource intensive prospects from
semi- and unsupervised learning approaches that offer the possibility of progress
without the bottleneck of needing a large number of training examples. Proper
seeding of these, however, may be needed, as was the case with the Never-Ending
Language Learning (NELL), along with cumulative use of knowledge to support
learning to learn (Hruschka, 2017).

In some domains, such as the biomedical, there are sufficient ingredients for
discovering new knowledge by leveraging ML, quality ontologies, and a wealth
of domain data about genes and cell functions (Yu, 2017).

Track B: Using background knowledge to improve machine
learning results

The mission of this track was to scope out challenges and opportunities when using
background knowledge to improve machine learning results, the role of ontologies and
comparable resources in achieving this, and the requirements for ontologies that may
be used in these ways. Five speakers provided examples and insights, and there was
lively discussion of the issues and ideas they raised. The sessions provided insights on
the semantic, syntactic and contextual aspects of machine learning using ontologies.
Relations with the themes of other tracks were discussed, along with common ideas and
opportunities (Bennett & Westerinen, 2017). The following are some of the highlights
of the presentations and discussions in this track.

e Background knowledge is useful for making ML results understandable, as well

as providing the human qualities of sentiment and intuition (Davidson, 2017;
Presutti, 2017).

e There is a bewildering array of model choices and combinations (Bennett &

Westerinen, 2017).
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Background knowledge could improve the quality of ML results by using rea-
soning techniques to select learning models and prepare the training and test data
(reducing large, noisy data sets to manageable, focused ones) (Davidson, 2017;
Erekhinskaya, 2017; Falk, 2017).

The ontologies used to enhance NLP results need not be the same ontologies
that are synthesized by NLP tools. Indeed, they may not even be the same kinds
of ontology (Bennett & Westerinen, 2017). The challenge is to ensure that the
ontologies are compatible, so that one can iteratively improve the same ontology
using these two activities.

Context is important for disambiguating terms such as “bear” and “cheese”. For
example, “bear” can be a noun (an animal), a verb (such as to bear arms) or an
adjective (a bear market). Similarly, “cheese” can refer to a food or is slang for
a drug (Bell & Kendall, 2017).

Combining ontology engineering with ML can improve decision support, includ-
ing improving the quality of decisions, making the reasons for a decision more
understandable, and adapting the decision making process to changing condi-
tions (Baclawski, 2017).

The Financial Industry Business Ontology”™ (FIBO) and corporate taxonomies
can help extract and integrate information from data warehouses, operational
stores and natural language communications (Bell & Kendall, 2017).

It is important not only to be able to extract knowledge graphs from multilingual
text but also for the ontology itself to be multilingual (Buitelaar, 2017).

Track C: Using ontologies for logical reasoning and vice versa

The goal of track C was to discuss the techniques developed for reasoning using onto-
logical foundations. Any intelligent agent has four basic components:

1.
2.

sensors which receive external signals in various forms;

knowledge, which manifests in various forms (e.g., qualitative, quantitative and
combinations of both);

inference mechanisms which reason about the world, given the sensor input,
using knowledge; and

actuators, which execute various forms of action (e.g., physical and mental)
(Fritzsche & Sriram, 2017).

However, human intelligence also requires:

1.

2.

feedback mechanisms, including the ability to learn new behaviors (Baclawski,
2017; Gil, 2017);

emotion and sentiment analysis (Davidson, 2017; Presutti, 2017);



3.

social behaviors (Davidson, 2017).

The following are some of the highlights of the presentations and discussions in this

track.

Ontologies form the core for knowledge representation, which is used by the
appropriate inference strategy (Kuksa, 2017).

Many forms of inference strategies exist (e.g., backward and forward reasoning,
inexact reasoning, constraint satisfaction, theorem proving) (Kuksa, 2017).

By progressively adding axioms (premise selection) one can improve the speed
of inference (Kuksa, 2017).

Other forms of reasoning are also important inference mechanisms. Probabilis-
tic is one such form of reasoning (Aasman, 2017; Getoor, 2017). Analogical
reasoning is another (Rugaber, 2017).

Ontology interoperability ranges from lowest expressivity (e.g., taxonomy) at
the syntactic level to intermediate (e.g., thesaurus) at the structural level with
various levels of expressivity (e.g., conceptual models and logical theory), and
to the highest semantic level with First Order Logic. See Figure 2.

Tools and technologies also follow this progression (Kuksa, 2017).
Reasoning can help disambiguate terms in overlapping domains (Hitzler, 2017).

Ontologies can aid in the discovery of scientific knowledge and can help auto-
mate the discovery workflow. Workflow analysis can help understand the results
of the scientific discovery process (Gil, 2017).

Design engineering examples applicable for ontology inference relate struc-
tural strategies, requirements and use cases, including ecosystem requirements
(Rugaber, 2017).

Ontologies can be used for finding analogies in the biological domain to prob-
lems in the engineering domain (Rugaber, 2017).

3 Background

Early success with machine translation, as well as machine “learning” using statistical
methods, suggested that some progress could be made sub-symbolically, i.e., without
specific representations of knowledge (Koehn, 2010). Recent Al techniques are dom-
inated by sub-symbolic ML. However, sub-symbolic ML generally works by solving
classification or regression problems on uninterpreted raw data. Systems devised to
solve these problems can be said to “learn” in the sense of optimizing a set of model
parameters to increase performance over time. Calling it “learning” makes it sound
cognitive and mind-like, but computationally it generally has no resemblance to how
humans think, learn and understand or how ontologies represent knowledge.



The most common recent Al techniques use biologically inspired neural net archi-
tectures along with optimizing and statistical approaches. In addition to being sub-
symbolic, these techniques proceed “bottom up” from data such as text and images.
Interacting with text and images like this is very different from the much broader, bi-
ologically inspired, experience of interacting with the world. While there are some
smart systems, such as self-driving cars, that have a limited range of such interactions,
learning on the job here seems risky (Baclawski, Gross, et al., 2017).

Current Al progress has yet to master the broader forms of learning and understand-
ing that comes from real-world, embodied experience. Some think that such embodied
learning requires starting with a cognitive core and then successively developing more
sophisticated cognitive models (Hruschka, 2017). The social aspect of real-world, em-
bodied experience includes learning common knowledge from other intelligent agents,
along with their information bearing products, such as text, data and physical actions.
While acquisition of domain knowledge and domain reasoning methods continue to
improve, it has proven very hard to “code” into machines or to learn bottom up without
some seed knowledge. Some automated help is needed to handle the major bottle-
neck issues of domain and general knowledge, which can help with common sense and
reasoning, such as the many daily inferences that humans make (Wactlar, 2017).

ML techniques are primarily statistical, so incorporating uncertainty into ontologies
would be useful when ontologies are used with ML. The following are two of the
techniques for integrating probability with semantics:

e Statistical Relational Learning. General Al needs to deal with both relational
structure and uncertainty. A particular line of work focusing on the combination
of probabilistic models with description logic is known as Probabilistic Seman-
tics (Pileggi, 2016).

e Probabilistic Soft Logic (PSL) is a machine learning framework for developing
probabilistic models. PSL uses first order logic rules as a template language for
graphical models over random variables with soft truth values from the interval
[0, 1] (Getoor, 2017).

In addition to uncertainty reasoning, there are many fields that are necessary for
achieving Al that is general and robust. Figure 3 illustrates these components and their
interactions with one another.

4 Opportunities and Challenges

A great many techniques have been developed that make use of learning, reasoning and
ontologies. This section is an attempt to survey some of the problems and opportunities
of the relationships among learning, reasoning and ontologies.

4.1 Predictions using Biological Organization

The cell, along with body systems, is usually modeled using levels of organization,
each of which can be represented using an ontology — from the molecular and bio-
chemical level, to the cellular and tissue level, to the organ and organ system level, and
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Figure 3: Robust Intelligence Components and Interactions (Wactlar, 2017)

to the level of biospheres. Biological organization is often called a “hierarchy”, but it
is not a hierarchy in the ontological sense. Functionalizing the levels of organization,
i.e., mapping from one level to another, is a form of reasoning, called “biological infer-
ence”. An example is the genotype-phenotype map (Genotype-phenotype, 2017). ML
guided by ontologies, such as the manually curated Gene Ontology (GO), is the un-
derlying technique for biological inference from genes to their protein products (Gene
Ontology, 2008). This use of ML employs extensive measurement data on the network
relations between genes and their protein products. GO is structured to specify these
network relations by means of the three GO domains: Biological Process, Cellular
Component, and Molecular Function (Yu, 2017).

Biological inference leverages knowledge of gene co-expressions and protein-
protein interactions to create a data-derived gene similarity network. An alignment
process identifies which data terms are new and which recapitulate existing knowledge
in GO. Taken together, this knowledge can be reduced to an ontological hierarchy and
aligned with the GO, suggesting names for new, data-driven terms. A majority, about
60%, of relations found by data derivation for cellular components are already in the
GO-Cellular Component, but only about 25% of the derived terms for Biological Pro-
cess and Molecular Function were already found in GO, indicating that much poten-
tially useful knowledge can be uncovered using such techniques (Hahmann, Stephen,



& Broderic, 2016; Yu, 2017).

Not every domain has the degree of agreement on base ontologies that has been
achieved in the BioMedical domain. Likewise, not every area has the degree of agree-
ment on levels of organization. Therefore, it is an open research issue whether some-
thing like this be achieved in other domains.

4.2 Context Identification

Words like “stock” and “bear’” have many different interpretations that depend strongly
on the context (Bell & Kendall, 2017). Thus in the context of a financial discussion
that touches on stocks, the term “bear” is likely referring to investor or stock market
attitude as opposed to a type of mammal. Context is fundamental to interpretation, yet
it is difficult to formalize the notion of context. Perhaps the best stance is to agree with
Pat Hayes (Hayes, 1997) that there is no single notion of context. At its core, a context
determines whether a proposition can be said to be true or false. For example, saying
“There are lots of bears in the stock market” is reasonable, while a proposition stating
that “There are lots of polar bears in the stock market” is likely false, due to the context.
What we understand as the context can depend on context itself. Important work in
this area was done by John McCarthy and Pat Hayes in their situation calculus (Hayes,
1997). Another important technique is situation theory (Devlin, 1991). Situation theory
has been formalized as an ontology expressed in the Web Ontology Language (OWL)
(Baclawski, Malczewski, Kokar, Letkowski, & Matheus, 2002; Kokar, Matheus, & Ba-
clawski, 2009). Situation theory is very popular in many domains, especially military
and business domains.

While situation theory is an effective formalization for context in many cases, it
is not a complete solution to the notion of context. The challenge is to develop an
effective formal notion of context that can be used to disambiguate the interpretation of
words in human discourse and potentially lead to what is called “understanding”. Both
situation calculus and situation theory support reasoning processes. Situation theory
is especially versatile in this respect, allowing many forms of reasoning (Baclawski,
Chan, et al., 2017).

4.3 Cognitive Scaffolding

Machine learning has come a long way since Arthur Samuel’s 1959 definition of ML
as a sub-field of computer science that gives computers the ability to learn without be-
ing explicitly programmed (Samuel, 1959). ML, in this sense, has become much more
feasible now that more and richer data has become available. However, as noted in
Section 3 above, we are still far from achieving ML without any explicit programming.
Modern machine learning workflows often include routine tasks for: problem evalua-
tion, data exploration, data pre-processing, and model training, followed by testing and
deployment, all of which are supervised by humans. Nevertheless, some applications
of ML have become more cognitive, contextual and holisitic rather than being purely
bottom up. Achieving these features requires more intelligent processing and more
knowledge.



For example, some knowledge is needed to handle ambiguity for words such as
pen”, which have many senses. One sense of “pen” is of a writing instrument, but
another is of a small enclosure for holding animals or children, depending on context.
But the context here isn’t really a statistical one. Understanding a sentence with “pen”
in it often requires real world knowledge about the relative sizes of boxes and pens.
One way to provide such knowledge is to begin with a knowledge “starter” or “seed”
which can be expanded by applying Al processes, such as ML. An example of seeding
knowledge for intelligent process was illustrated in the NELL system for one important
cognitive task: reading (Hruschka, 2017). The inputs to NELL include:

.

1. an initial ontology defining hundreds of categories (e.g., person, sports team,
fruit, emotion) and relations (e.g., plays on team (athlete, sports team), plays
instrument (musician, instrument)) that NELL was expected to read about, and

2. 10 to 15 seed instance examples of each category and relation.

Seeding knowledge in this case was helped by the topical focus of what NELL’s reading
task was, for example, reading about sports or music.

A more general question is the ontological basis of sufficient knowledge needed by
an autonomous, intelligent agent which observes and acts in and on an environment
in a directed way to achieve goals. This remains an abiding question. No single ar-
chitecture, technique or tool is currently available for developing an intelligent agent
even for relatively simple information agents such as envisioned in the original DAML
effort (“DARPA Agent Markup Language”, 2006). Candidate approaches, however,
abound from disciplines as diverse as Cognitive Development, Cognitive Science, De-
velopmental Robotics and Al. One example is the Soar cognitive architecture for gen-
eral intelligent agents (Laird, Newell, & Rosenbloom, 1987; Newell, 1990; Wray &
Laird, 2003). Another example is the ACT-R cognitive architecture for simulating and
understanding human cognition (Anderson & Lebiere, 1998). A third example is the
belief-desire-intention software model for programming intelligent agents (Georgeff &
Lansky, 1987; Huber, 1999; Rao & Georgeff, 1991).

But such agent systems have difficulty accommodating common sense things like
diverse spatio-temporal information, including quantitative and qualitative assessments
within a single analytic context in a suitable period of time. Yet, as part of the analytic
process for understanding a situation, humans easily integrate both quantitative and
qualitative information assessments to arrive at conclusions, and this happens before
humans, for example, learn to read. That is, the seeding for something like NELL
appears to be part of human development. How is this? It seems reasonable to as-
sume that some degree of innate structure is needed to develop a cognitive system and
relevant knowledge for some common things as part of an agent’s experience. Such
cognitive development, particularly in the context of general intelligence, is sometimes
discussed in terms of an early scaffolding with a core set of cognitive abilities provid-
ing a temporary structure to afford organizing more general knowledge and learning
during the progressive development into a richer cognitive skill system.

In Cognitive Science, knowledge is conceived as the main outcome of the process
of understanding: by interacting with the environment, intelligent agents are able to
interpret and represent world facts, suitably acting to preserve themselves and pursue
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specific goals accordingly (Albertazzi, 2000; Neisser, 1987). Representing knowledge
is a necessary step for communication, but knowledge can be properly represented only
insofar as world phenomena are previously presented to humans, namely experienced
through cognitive structures. Such a cognitive scaffolding could be understood as a
starter set: a type of dynamic building block.

Unfortunately, there are currently no accepted starter sets within most domains nor
a general theory as to what a starter set is or what the first recognizable knowledge and
reasoning components are. The Cognitive Linguistics Hypothesis, for example, sug-
gests that likely, common human experiences with the world are simple, limited and
constrained (Johnson, 1990). Given this, a core part of understanding is grounded in
perception and action. This core semantics is represented in what some call “image
schemata”, which act as metaphorical frames and cognitive building blocks. Candi-
dates for what image schemata could be include such familiar ontological foundation
notions as: Objects, Process and Part-Whole relations, Motion, Full-Empty, Container,
Blockage, Surface, Path, Link, Collection, Merging, Scale and Emerge (Oltramari,
2011). Some ontology design pattern work and reference ontologies have leveraged
these notions, such as work on containment, motion and path.

This leads to many challenges:

e What are candidates for a set of knowledge that could provide adequate cognitive
scaffolding? Various possibilities were discussed above.

e As part of scaffolding, an intelligent agent must represent relevant knowledge so
that it is accessible and usable for achieving the agent’s purpose. How is such
meta-knowledge about representation learned?

e As part of scaffolding, intelligent agents need control mechanisms to find rele-
vant pieces of knowledge in particular contexts. How is this learned and what
knowledge is involved?

e How can an agent recognize existing patterns and entities, even with partial
and/or noisy input?

e How can an agent determine what existing categories a pattern belongs to and
how well it fits the categories?

e Predicting the near-term future is an important requirement for agent situation
awareness. Even if a pattern has been recognized, how can it be projected into
the future?

e How can new patterns and entities be learned and categorized?

e How can an agent select pertinent information at the input level as well as during
learning and cognition?

e How can an agent learn new skills, both mental and physical?

11



4.4 Ontology Alignment

Currently, there is no general agreement on ontologies to handle the range of heteroge-
neous information in the Big Data age. While we have seen numerous efforts to create
domain ontologies, the vocabularies and ontologies behind various data sources are not
generally interoperable. General methods to merge and align ontologies include such
things as PROMPT, an algorithm for semi-automatic merging and alignment of on-
tologies (Noy & Musen, 2000). But as noted more recently in Ontology Summits and
related sessions, there are issues in reconciling and aligning ontologies with different
assumptions and concepts (Hashemi et al., 2012; Stephen and Hahmann, 2016). There
is work on ontology integration which has produced algorithms and heuristics with
some success in making such computations tractable (Euzenat, 2004). However, the
effective use of ontology formalisms (i.e., rules and axioms) as part of an integration
process remains an open question (Udrea, Getoor, & Miller, 2007).

One of the things that makes the ontology integration process difficult is that as
part of the process we need to understand the relationship between knowledge struc-
tures (classes and properties) and instance data in target ontologies. Existing ontology
matching and alignment techniques are very restricted. They find similarities, equiv-
alences and subsumption relations between two (or more) ontologies which must, at
least, be syntactically and schematically integrated, have similar scope and context,
and be no more expressive than OWL. In reality, semantic integration between ontolo-
gies of even a single domain (such as in hydrology) is much more problematic (Stephen
and Hahmann, 2016). It requires translation of the ontologies’ languages and a more
rigorous specification of the semantics in each ontology. This can currently be done
only by manual integration of the ontologies, but use of a suitable reference ontology
may help automate this as in (Stephen and Hahmann, 2016). In addition, integration
must have the capacity to use the semantics of the ontology to model the relationships
between the ontologies being integrated, and to create a coherent and consistent inte-
grated or aligned ontology.

Another abiding source of difficulty for matching parts of ontologies is that an
ontology is designed with certain background knowledge (axiomized or not), for a
purpose, and within a specific context (explicit or implicit). The context for an ontol-
ogy can include the experience of the ontologists who developed the ontology, their
preference for particular upper level ontologies, domain vocabularies, ontology design
patterns or source data used in the development of the ontology. These may not be
part of an ontology specification, and, thus, are not available to aligning tools or en-
tity/relation matchers. This lack of background knowledge and context can lead to
ambiguities (Shvaiko & Euzenat, 2008).

One example of an attempt to deal with the challenges of ontology alignment is
the Ontology Alignment Evaluation Initiative (OAEI), which runs contests on ontol-
ogy alignment (“Ontology Alignment”, 2016). In the OAEI, ontology matchers are
challenged with a robust set of ontology and data sources to be matched. For exam-
ple, match the Adult Mouse Anatomy (2744 classes) with the National Cancer Institute
Thesaurus (3304 classes) which describes the human anatomy. As in past campaigns,
they use a systematic benchmark series to be matched. The work of this benchmark
series has been to identify the areas in which each alignment algorithm is strong and
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weak.

4.5 Knowledge Graph Identification and Extraction

The reality of Big Data allows querying from massive repositories of potentially in-
terrelated facts. Unfortunately, as noted in prior Ontology Summits, representing this
information in rich formation to make it useful knowledge is a formidable challenge
(Ray, Griininger, Mason, & West, 2009; Hashemi et al., 2012). One interesting thrust
is to transform source material (typically natural language text) into a knowledge graph
form. A knowledge graph is a structure where entities are graph nodes, categories are
word labels associated with each node, and relations are directed edges between the
nodes. A knowledge graph is thus one simplified version of an ontology and something
less formal than Sowa’s conceptual graphs (Sowa, 1976). Such efforts to build even this
simple structure require resolving entity identification and entity relationships. There
is a degree of uncertainty and noise in and about such relationships targeted in these
extractions as well as the need to infer missing information, and determining which
candidate facts should be included into a knowledge graph as part of the identification
process. One approach is to:

1. associate extraction confidences along with candidate facts,
2. identify co-referent entities, and
3. incorporate ontological constraints.

This approach relies on probabilistic soft logic (PSL), a recently introduced probabilis-
tic modeling framework which easily scales to millions of facts such as demonstrated
with extractions from the NELL project containing over 1M extractions and 70K onto-
logical relations (Pujara, Miao, Getoor, & Cohen, 2013). The underlying mathematical
framework of PSL supports extremely efficient inference continuous optimization task,
which can be solved efficiently. PSL includes the ability to reason holistically about
both entity attributes and relationships among the entities, along with ontological con-
straints. In practice, PSL has produced state-of-the-art results in many areas spanning
NLP, social-network analysis, and computer vision. With PSL, large-scale knowledge
graph extraction problems with millions of random variables can be orders of magni-
tude faster than existing approaches (Getoor, 2017).

While there have been advances in knowledge graph identification, it remains an
open problem to extend iterative knowledge extraction and learning techniques of sys-
tems like NELL to systems that are capable of learning, retaining and using knowledge
over a lifetime.

4.6 Processes

It should be obvious that learning, reasoning and ontologies occur within larger pro-
cesses where they, and the relationships between them, form steps. John Sowa pro-
posed that “For intelligent systems, the cognitive cycle is more fundamental than any
particular notation or algorithm”. Then he concluded that “By integrating perception,
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learning, reasoning, and action, the cycle can reinvigorate Al research and develop-
ment” (Sowa, 2015, p. 56). Several of the summit presentations emphasized the im-
portance of processes, which were mostly in the form of some kind of “feedback loop”
(Aasman, 2017; Baclawski, 2017; Gil, 2017; Oltramari, 2017; Yu, 2017). We will re-
fer to such loops as “cognitive cycles”. There are many examples of cognitive cycles
where learning, reasoning and ontologies all occur. The scientific discovery process
is an example with a long history (Gil, 2017). A great many activities can be re-
garded as decision making cycles in which each iteration improves understanding and
awareness by finding new knowledge as well as by rejecting some previous knowledge
(Baclawski, 2017; Hitzler, 2017).

In the past, a single iteration of a cognitive cycle, such as the scientific discovery
process, could take decades. Today, cognitive cycles occur more quickly, much more
data must be processed and the data is more complex. Learning, reasoning and ontolo-
gies, and the relationships between them that are the subject of this Ontology Summit,
can play important roles in cognitive cycles. Several previous summits are also relevant
to the cognitive cycle. There is a need to deal with massive amounts of data (Griininger
etal., 2014). The data come from large collections of sensors (Underwood et al., 2015).
Finally, the processing of the data requires many steps that must interoperate (Fritzsche
etal., 2017).

While combining learning, reasoning and ontologies within cognitive cycles has
potential advantages, it is not commonly practiced. To the extent that such processes
are automated at all, they are generally ad hoc and informal. To automate the scien-
tific discovery process, it is necessary to use NLP to extract the workflow of experi-
mental activities that are performed, and the scientific hypotheses that are generated
(Baclawski, Futrelle, Fridman, & Pescitelli, 1993; Gil, 2017). Another requirement
is to record provenance, i.e., the origin of facts and knowledge. The challenge is to
develop the required ontologies, to standardize them, to formulate best practices, and
to convince communities to use them. In some cases, such as PROV-O for provenance
and the Open Provenance Model for Workflows for the scientific discovery workflow,
ontologies have been standardized (Garijo & Gil, 2014; PROV-O, 2013). However,
other requirements of the cognitive cycle are less advanced. None of the existing on-
tologies are frequently used, and best practices are only starting to emerge (Baclawski,
2017; Gil, 2017).

There are many ways that learning, reasoning and ontologies can be combined with
one another in a cognitive cycle. Learning and reasoning are fundamental for each of
the steps in a cognitive cycle as well as the transition from one step to another step.
Ontologies can be used to organize these computational processes. Such techniques
can be used for processing relevant sensor data, which both make use of ontologies
for organizing the data and also help develop these ontologies. The ontologies can
have the further benefit of helping to make the data and the processing of the data
more understandable. Ontologies can be the basis for explaining results thus helping
to build trust in a system. Learning and reasoning could also be used at a meta-level
to optimize a cognitive cycle, to detect problems with the cycle, and to help correct
problems. Together, ontologies, learning and reasoning can be used to ensure that the
components of a system interoperate with one another in the intended manner.
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4.7 Dealing with Criticisms and Fluctuations

It is well known that the history of Al research is one of a series of boom and bust fluc-
tuations (“Al History”, 2017). The subfields of Al, as well as the field of Al as a whole,
have exhibited extreme fluctuations, and there is risk that this will happen again. The
field of ontology engineering is not immune to this same risk. While some domains,
such as the biomedical domain, use ontologies heavily and very successfully, other
domains, such as manufacturing, have had no significant applications of ontologies in
spite of the many ontologies that have been developed (Smith, 2017). Al is expanding
so rapidly in so many sectors of the economy that the mainstream media are beginning
to question whether there are sufficient benefits derived from these investments (Hardy,
2016). One possible way to mitigate the risk is to take the criticisms seriously and to
address them, rather than to ignore or ridicule the criticisms as has happened in the past
(“AlI Critiques”, 2017).

Big Data in general has been criticized for several years, and ML is subject to some
of the same criticisms (Marcus & Davis, 2014). While improving the relationships
between ontologies, learning and reasoning cannot completely address these issues
and concerns, they may be able to help.

1. Understanding the results is still essential. Indeed strong Al, thinking like a
person, ultimately faces the challenge of representing and using the knowledge
available to people. This issue was discussed extensively in Sections 4.2, 4.3
and 4.6, and many of tracks and presentations in the summit emphasized the im-
portance of this issue and proposed methods for dealing with it by strengthening
the connections between ML and ontologies (Baclawski, 2017; Davidson, 2017;
Gil, 2017; Presutti, 2017).

2. ML results most commonly are essentially a collection of correlations. One
criticism is the common mistake of presuming that a correlation automatically
implies causation. Understanding the results of ML in human terms can help
eliminate at least the more implausible examples of inferring causation from
correlation.

3. There is often a lack of consistency and interoperability of the data being used
in Big Data applications. Interoperability was the topic of the Ontology Summit
2016. We discussed this issue in Sections 2.4, 4.4 and 4.6 above.

4. A common criticism of Big Data applications is that the questions being asked
are often too imprecise. In other words, there is a disconnect between the queries
being performed on the data and the interpretation of the results. Precision is one
of the goals of ontologies. Improving the relationship between ontologies and
ML would help ensure that interpretations are consistent and understandable.

The problem of disenchantment with ontology engineering in some domains, such
as manufacturing, could potentially be addressed by establishing a “foundry” initiative
in each domain, similar to the Open Biological Ontology (OBO) Foundary that has
been very successful in the biomedical community (“Open Biological Ontologies”,
2003). However, it is an open problem whether one can replicate the success of the
OBO Foundary in other domains (Smith, 2017).

15



5 Conclusion

The Ontology Summit 2017 has examined a wide range of issues, opportunities, chal-
lenges and future prospects for the interconnections among learning, reasoning and
ontologies in the context of Al. We learned that one can uncover useful knowledge
about biological organization using ML and GO, but it is open whether this achieve-
ment is possible in other domains. We discussed the problem of identifying the notion
of context, which remains an unsolved problem, although some progress has been made
in some domains. We noted that Al in general, and ML in particular, is not possible
without some kind of starter knowledge; and we examined the many challenges in de-
veloping the “cognitive scaffolding” for such knowledge. We revisited the issue of
interoperability that was covered in last year’s summit, but for the specific problem
of ontology alignment, and determined that it is a significant open problem, although
progress is being made. We examined the problem of extracting knowledge graphs
from source material for use in ML and reasoning, and noted the opportunities for
advances in Al using iterative knowledge extraction and learning techniques for gen-
eral Al applications. We explored the processes that organize applications of learning,
reasoning and ontologies as well as the relationships between them; and we proposed
opportunities for addressing many important problems relevant to general Al applica-
tions. We showed how one can address, to some extent, some of the recent criticisms
of ML and Big Data by strengthening the connections between learning, reasoning and
ontologies. We also considered how one may be able to address the problem of the ac-
ceptance of ontology engineering techniques in domains that have not been receptive
to them.
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