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Abstract

A class of finite simplicial complexes, called pseudo cones, is devel-
oped that has a number of useful combinatorial properties. A partially
ordered set is a pseudo cone if its order complex is a pseudo cone. Pseudo
cones can be constructed from other pseudo cones in a number of ways.
Pseudo cone ordered sets include finite dismantlable ordered sets and fi-
nite truncated noncomplemented lattices. The main result of the paper
is a combinatorial proof of the fixed simplex property for finite pseudo
cones in which a combinatorial structure is constructed that relates fixed
simplices to one another. This gives combinatorial proofs of some well
known non-constructive results in the fixed point theory of finite partially
ordered sets.
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1 Introduction

One of the open problems [6, 9] in the fixed point theory of partially ordered sets
is to find a combinatorial proof that every finite truncated noncomplemented
lattice has the fixed point property. The original proof [5, Theorem 2.1] used
algebraic methods. The result was therefore not combinatorial. The purpose
of this paper is to provide a combinatorial proof of this result as well as of a
number of related results in [2, 3, 5, 6].

The basic structure we develop as the basis for the combinatorial proof is
called a pseudo cone (PC), defined in Section 3. A pseudo cone is a generalization
of the notion of a cone with a distinguished peak vertex. A PC structure is
essentially the same as an acyclic complete matching from discrete Morse theory



[14]. Consequently, the geometric realization of a PC is contractible and hence
homologically acyclic.

One of the important advantages of algebraic properties like acyclicity is that
one can construct larger acyclic simplicial complexes by “patching” together or
extending smaller acyclic complexes. This is basically how dismantlable or-
dered sets and truncated noncomplemented lattices were originally shown to be
acyclic. We develop an extension technique that applies to pseudo cones in Sec-
tion 5, and this technique is then used to show that dismantlable ordered sets
and truncated noncomplemented lattices are pseudo cones in Sections 6 and 7,
respectively.

The disadvantage of an algebraic property like acyclicity is that the fixed
point property is an abstract existence result. The fixed point is shown to exist
by exhibiting a property of the fixed point set that excludes the possibility that
the fixed point set is empty. Pseudo cone structures remedy this defect of alge-
braic methods. In this case, a nonempty combinatorial structure is constructed
that relates fixed points to one another. The combinatorial proof of the fixed
point property is given in Section 8. The proof makes use of a generalization of a
fixed simplex, called a hit, which is the basic unit of the combinatorial structure
that is constructed.

For simplicity in the sequel, all sets are assumed to be finite.

2 Combinatorial Background

We assume as background the notions of multisets, partially ordered sets (or
posets, for short) and simplicial complexes. As stated above, we assume that all
posets and simplicial complexes are finite.

2.1 Multisets

A multiset (or bag), is a generalization of a set in which elements can occur
more than once. One can formalize a multiset as a function m: U — N, where
U is the universe from which elements may be chosen. For a multiset m, the
multiplicity of x € U will be written in functional notation as m(z). It is
sometimes convenient to view multisets as if they were sets. For example, we
will write y € m to mean that m(y) > 1, and we will use the set-builder
notation to construct multisets. The analogue of the union of sets is the sum of
multisets, and we will use addition and summation to indicate this operation to
avoid confusion with the set-theoretical concepts. Unlike the case of sets, one



can multiply a multiset by a nonnegative integer.

2.2 Partially Ordered Sets

Let P be a poset with order relation <. The inverse relation of < is also a
partial order, called the dual order. A subset V' C P is called an (order) filter if
it is closed with respect to >, i.e., if z € V and y > z, then y € V. The principal
filter of an element = € P is the smallest filter containing x. The principal filter
is written V(z) and is the set {y € P | y > z}. Dually, a subset of P is an
(order) ideal if it is closed with respect to <, and the principal ideal of x € P is
written J(z) = {y € P |y < z}. An element z € P is said to covery € P if y
is a maximal element in J(x) — {z}. This relation is written y < z. If we wish
to allow y to be the same as x as well as be covered by x, then we write y < x.

Let P and @ be two posets. A function f: P — @ is said to be order-
preserving if f(x) < f(y) in Q whenever x < y in P. If P = @Q, then f is
said to be a self-map. A fized point of a self-map is an element x € P such
that f(x) = z. A poset P is said to have the fized point property if every
order-preserving self-map has at least one fixed point.

A subset S C P of a poset is always implicitly endowed with the order
relation obtained by restricting the order relation of P to S. A chain of a poset
P is a subset C' C P such that C is totally ordered as a poset.

Let P and Q be two posets. The cardinal power QF is the set
{f: P—= Q| f is order-preserving},

where functions are partially ordered pointwise (i.e., f < g if and only if for every
x € P, f(z) < g(z)). In particular, the poset of order-preserving self-maps of
Pis PP,

A lattice L is a poset such that every pair of elements x,y € L has a least
upper bound (join) z V y, and a greatest lower bound (meet) z A y. If a lattice
has a maximum element, we write it 1, and if it has a minimum element, we
write it 0. The truncation or proper part of a lattice is L=1L- {6, i} Two
elements z,y € L are said to be lower semi-complements if Ay = 0. One
similarly defines upper semi-complements. Two elements =,y € L are said to be
complements if they are both upper and lower semi-complements. A lattice is
said to be complemented if every element has a complement, and the lattice is
noncomplemented otherwise. (See [7] for more about lattices.)



2.3 Simplicial Complexes

For a set S, let F'(S) be the poset of finite subsets of S. A (reduced) simplicial
complex ¥ is a nonempty order ideal of F'(S) for some set S. The vertex set of
a simplicial complex ¥, is {s € S| {s} € Z}. It is easy to see that a simplicial
complex ¥ with vertex set V' is an order ideal of F(V). The elements of V are
called the vertices of 3, while an element ¢ € X is called a simplex of 3. To
simplify the presentation of examples, we will use one-digit integers as labels for
vertices and a simplex will be written by concatenating the vertex labels in order.
Thus the simplex {1,3,5} will be abbreviated 135. The length (cardinality) of
a simplex ¢ € ¥ will be written |o|. The length of a simplicial complex is
the maximum length of any of its simplices. If W C V| then the subcomplex
of ¥ restricted to W is the simplicial complex X|W = {0 € ¥ | ¢ C W}
We say that W is connected if for every v,w € W, there exists a sequence
v = wp, w1, ..., w, = w of vertices such that for i = 1,...,n, {w;_1,w;} € Z|W.

Let 0 € ¥. The (closed) star of o in ¥ is the simplicial complex Sts (o) =
{r € ¥ | 7Uc € X}. In particular, Stx(#) = 3. The link of o in X is the
simplicial complex Lks(o) = {r € ¥ | 7Uoc € Yand 7 No = §}. When
o = {v}, we will write Stx(v) for Stx({v}), and Lks(v) for Lks({v}). When
there exists a vertex v such that ¥ = Sts(v), then we say that ¥ is a cone (with
peak v).

For simplicial complexes ¥ on V and ¥/ on V', a simplicial map is a function
from vertices to vertices, f: V — V', such that for every simplex o € X, we
have that f(o) € ¥'. A simplicial map f: V — V' induces an order-preserving
map P(f): ¥ — X' in the obvious way. As a result, there are two possible
interpretations of the “fixed point property” for a simplicial complex. One
can use arbitrary order-preserving maps on the simplicial complex, or one can
restrict attention to the simplicial maps. That these two interpretations are
equivalent is shown in the following;:

Proposition 2.1 For a finite simplicial complex X2 on vertex set V', the follow-
ing are equivalent:

1. For every simplicial map f:V — V, there exists a nonempty simplex
o € X such that f(o) =o0.

2. For every order-preserving map f: ¥ — X there exists a nonempty simplex
o € 3 such that f(o) = 0.

Proof The implication (2)=(1) is trivial. To show (1)=(2), let f: ¥ — X
be an order-preserving map. By finiteness, there exists a function ¢: ¥ — V
such that for every nonempty o € X, we have that ¢(co) € 0. Define a function



g: V. — V such that for every v € V,g(v) = ¢(f({v})). To show that ¢ is
a simplicial map, let ¢ € ¥ and v € 0. By definition of g and ¢, we have
that g(v) = ¢(f({v})) € f({v}). Since f is order-preserving, f({v}) C f(o).
Therefore g(v) € f(o). This is true for every v € o, so g(o) C f(o). It follows
that g(o) € X, and ¢ is a simplicial map. By hypothesis (1), there exists a
nonempty simplex 7 € ¥ such that g(7) = 7. We have already shown that
g(o) C f(o) in general, so in particular we have that 7 = g(7) C f(7). Since &
is finite, the ascending sequence 7 C f(7) C f(f(7)) C ... must terminate in a
finite number of steps to a nonempty fixed simplex. Il

When one of the two equivalent conditions in Proposition 2.1 holds, we say
that the simplicial complex has the fized simplex property. The reason we did
not call this the fixed point property is that one might reasonably interpret
“point” to mean “vertex,” and this property is definitely not a fixed vertex
property. However, in the next section we show that for posets, a fixed simplex
property implies the fixed point property.

2.4 The Order Complex

We now discuss the relationship between posets and simplicial complexes. Of
course, a simplicial complex is a special kind of poset. In the other direction,
the order complex of a poset P is the simplicial complex A(P) whose simplices
are the chains of P, including the empty chain. The order complex is a special
case of the clique complex of a graph, which consists of all complete subgraphs
of the graph. The order complex of a poset P is the clique complex of the graph
on P whose edges are the unordered pairs {z,y} such that z < y in P. If P is
itself a simplicial complex, then A(P —{(}) is called the barycentric subdivision
of P. One can transfer simplicial complex notions to posets by using A. For
example, a poset P is connected if and only if A(P) is connected. A poset P
will be called a cone if A(P) is a cone, and a peak of A(P) will be called a
peak of P. An order-preserving map of posets defines a simplicial map on the
corresponding order complexes.

Proposition 2.2 Let P be a poset. If A(P) has the fized simplex property, then
P has the fixed point property. The converse is not true.

Proof Let f: P — P be an order-preserving self-map. If the corresponding
simplicial self-map on the order complex fixes a nonempty simplex, then it fixes
every element in the simplex because a simplex is a chain. Consequently, P has
the fixed point property.

It should not be surprising that the converse is not true. There are many
more simplicial self-maps on A(P) than those that arise from order-preserving



self-maps. For example, let P be the poset consisting of the vertices, edges
and faces of the square pyramid, ordered by containment. It is shown in [5,
Example 2.4] that P has the fixed point property. However, the order complex
A(P) does not have the fixed simplex property. To see this, label the vertices
of the pyramid with A,0,1,2,3, so that A is the “apex” and the base of the
pyramid is the square 0123. The poset P has 18 elements: 5 vertices, 8 edges
and 5 faces. Define a simplicial automorphism on A(P) as follows. Interchange
A with the base 0123. Map each vertex i to the face with vertices A, ¢ and ¢+ 1
(mod 4), and this face is mapped to i +1 (mod 4). Map each edge with vertices
A and i to the edge with vertices ¢ and i + 1 (mod 4), and this edge is mapped
to the edge with vertices A and ¢ + 1 (mod 4). Consequently, when one applies
this automorphism twice, it rotates the pyramid by 90°. It is straightforward
to check that this automorphism has no fixed simplices, so A(P) does not have
the fixed simplex property. This counter-example proves that the converse does
not hold. H

3 Pseudo Cones

The simplest kind of contractible poset is one with a maximum or minimum
element, or more generally one with an element that is comparable with every
other element. The corresponding property for a simplicial complex is that it
be a cone. We propose to generalize the notion of a cone.

If a simplicial complex I' is a cone with peak v, then one may partition I'
into two equal-sized subsets: the simplices containing v and the simplices that
do not contain v. Adding or removing v defines bijections between these two
subsets, and every simplex containing v covers exactly one simplex that does
not contain v. Accordingly, we will consider simplicial complexes ¥ that can
be partitioned into two subsets such that there is a bijection between them. It
is helpful to have a simple word for specifying that a simplex is in one of the
two subsets. We will call them upper and lower simplices. Upper simplices will
be analogous to the simplices of a cone that contain its peak v; while the lower
simplices will be analogous to the ones that do not. The names are suggestive
of the fact that each upper simplex covers a lower simplex. Unlike cones, it is
possible for an upper simplex to cover more than one lower simplex, but we will
require that one of these lower simplices be the one that is bijectively related to
the upper simplex. We now make this precise.

Definition 3.1 Let X be a simplicial complex. A pseudo cone structure on X
consists of:

1. A partition of ¥ into upper and lower simplices;



2. A partial order < on the simplices such that:

(a) For every upper simplex o, the set of simplices that it covers (with
respect to the containment order) has a smallest simplex (with respect
to <), and this simplex is a lower simplex. This simplex will be
denoted v(o);

(b) The map v is a bijection from the set of upper simplices onto the set
of lower simplices, so it has an inverse which will be denoted (3.

A simplicial complex ¥ is said to be a pseudo cone if it has at least one PC
structure. A poset P is said to be a pseudo cone if A(P) is a pseudo cone. We
now show that a cone is a special case of a pseudo cone. A pseudo cone that is
not a cone will be called a proper pseudo cone.

Proposition 3.2 A cone is a pseudo cone.

Proof Let X be a cone with peak v. Define a simplex to be an upper simplex
if and only if it contains v. Define a partial order on the simplices by o < 7 if
and only if o is a lower simplex and 7 is an upper simplex. It is easy to check
that this defines a PC structure on 3. Il

One usually draws a poset by joining elements with an edge if one element
covers the other. The resulting graph is called the Hasse diagram of the poset.
The bijection v maps each upper simplex to one of the simplices that it covers.
As a result, v can be regarded as defining a complete matching (also called a
perfect matching) of the Hasse diagram of the simplicial complex. The existence
of a complete matching implies that the number of simplices of a PC is always
even. In particular, a PC cannot consist of only the empty simplex. In fact, the
following stronger cardinality conditions must hold:

Proposition 3.3 Let X be a simplicial complex with a complete matching, let
n; be the number of simplices of ¥ of length i, and let n; qown be the number of
simplices of ¥ of length i that are matched with a simplex of length i — 1. Then

l _
Ni+1,down = Zi:o(_l)l Zni7 fO’F every [ >0.

Proof The proof is by induction on [. Let n; ., be the number of simplices
of ¥ of length ¢ that are matched with a simplex of length ¢ + 1. Then n; , =
Nit+1,down. Lhe case | = 0 is trivial, because ng = 1, and exactly one simplex
of length 1 is matched to the empty simplex below it. The case | = 1 is also
trivial, because n2 down = N1,up = M1 — N1,down = N1 — No. The inductive step



l—1—141forl > 1 proceeds as follows:

Ni+1,down = N,up = N — N ,down
=N —Nj—1up =N — (nlfl - 7/Llfl,dovvn)

=Ny —Nj—1 + N—1,down

-2
=n; —nj_1+ Z(*l)liziini
=0

l
=> (-1)'7'n;M
i=0

In Definition 3.1, the partial order < is only used to compare pairs of sim-
plices of the same length that are covered by the same upper simplex. Indeed, it
is only used to distinguish v(o) among the simplices covered by the upper sim-
plex 0. To distinguish < from the partial order of the simplicial complex itself,
we will sometimes refer to it by using precedence terminology. For example, we
will say o is earlier than 7 rather than o is less than 7 when o < 7.

While the precedence partial order on a PC is not unique, the bijection
determines a unique “smallest” precedence order in a sense we now make precise.
Let R be the relation on ¥ x ¥ consisting of the ordered pairs R = {(o,7) |
o = 7 or Jp such that v(p) = o and 7 < p}. Clearly, the bijection 7 defines a
PC structure if and only if R is acyclic. If R is acyclic, one can define a partial
order <* by taking the transitive closure of R. If we regard partial orders as
binary relations related by containment, then a partial order < is compatible
with ~ if and only if it contains <*. In particular, this means that one could
assume that the precedence order is a total order by using a linear extension.
We now give an example to show the need for the precedence order.

Example 3.4 Consider the following simplicial complex, written using the no-
tation introduced in Section 2.3:

¥ ={0,0,1,2,3,01,02,12}.
Partition the simplices of X2 into these two collections:

{0,0,1,2} and {3,01,02, 12}
and then arrange them in pairs as follows:

(,3),(0,02),(1,12), (2, 02).

The pairs above have the property that the first simplex in each pair is covered
by the second simplex. So X has a complete matching of its simplices.



It is easy to check that no partial order on the simplices of ¥ can serve as the
precedence order of Definition 3.1 for the complete matching in Example 3.4.
Geometrically, > in this example is disconnected, so it does not satisfy the fixed
simplex property. Furthermore, the subcomplex of ¥ on the vertices {0, 1,2}
is connected but does not satisfy the fixed simplex property. For example, the
simplicial map that takes each vertex i to i + 1 (mod 2) has no nonempty fixed
simplex. So it isn’t even true that all of the connected components of ¥ satisfy
the fixed simplex property.

It is relatively easy to find many more examples of complete matchings of
simplicial complexes as well as proper pseudo cones. One can do this by ran-
domly generating simplicial complexes and then checking to see if they have the
desired structure. In Figure 1, we show the proportion of simplicial complexes
that are proper pseudo cones among all simplicial complexes and among only
the ones that satisfy the conditions in Proposition 3.3, respectively. The sim-
plicial complexes are generated by randomly selecting maximal simplices with
length L from a set of vertices of size V. There is a graph for each choice of V
and L. The horizontal axis is the number of maximal simplices, and the vertical
axis is the proportion of the simplicial complexes that are proper pseudo cones.
Note that the vertical scale of the graphs on the left differs from that on the
right. The software for computing the proportions in Figure 1 is freely available
as an executable jar file at [4]. The source code can be extracted from the jar
file.

4 Straightening Laws

We now introduce a technique for rewriting a simplex in a standard form. The
technique is called a straightening law, and the standard form is called the
straightening formula. The term “straightening” arises from the systematic use
of a precedence order to guarantee that the standardization process converges.
During a particular straightening operation, it is possible for the same simplex
to occur more than once, so it is necessary to keep track of multiplicities.

The straightening law is based on a special kind of path in the Hasse diagram
of ¥ that we call a S-path. In such a path, the edges alternately ascend and
descend, such that the ascending edges join simplices that are related to each
other by the pseudo cone structure. We make this precise as follows:

Definition 4.1 Let ¥ be a pseudo cone. A B-path is a monempty sequence
{00,...,0m} of simplices of ¥ such that:

1. o,, is an upper simplez.
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2. For every i such that 0 < 2i < m, o9; is a lower simplex, and 09,41 =

B(o2:);

8. For every i such that 0 < 2i < 'm, 09; < 09;_1, and 0g; 7# T9;_3.

The first simplex g is called the source of the 5-path, while the last simplex o,
is called the target or destination. More succinctly, a B-path proceeds from its
source and to its target. The length of a [-path is m, i.e., one less than the
number of simplices in the sequence.

P g1 5 g3 e 5 Om—1
SN N RN
o0 < 02 <X 04 < - <X Om2 < On
Figure 2: Even length S-path
5 o1 5 o3 N 5 Om—2 p Om
SN N SN S
o] =< g2 < 04 < < Om-3 < Om-1

Figure 3: Odd length g-path

Note that by condition (2), the even simplices determine the odd simplices
(and vice versa, except for the last simplex when m is even). For a (-path
{00,...,0m}, the simplices with odd subscripts are upper simplices, and they
all have the same length. The simplices with even subscripts are lower simplices,
except for the last simplex when m is even. The simplices with even subscripts
all have the same length. It is easy to see that all the simplices in a S-path
are distinct. Furthermore, the simplices having even subscripts form a strictly
ascending sequence in the =< order. The two kinds of §-path are shown in
Figures 2 and 3. A V-path in discrete Morse theory (see [14]) is a S-path of
even length except that the target is a lower simplex. The “V” in V-path is a
discrete vector field. This corresponds to the bijection -y, except that in discrete
Morse theory the discrete vector field need not be complete and need not be
acyclic. By the discussion prior to Example 3.4, the bijection + determines a
binary relation R. It is easy to check that R is acyclic if and only if there is no
closed V-path. Thus a simplicial complex is a PC if and only if it has an acyclic
complete matching in the sense of discrete Morse theory.

We now define the straightening formula in terms of S-paths as follows:

11



Definition 4.2 Let X be a pseudo cone. The straightening formula for a sim-
plex o is the multiset of targets of all B-paths whose source is o. The straight-
ening formula of o is written str(c).

While the definition of straightening is combinatorial, it can be difficult
to prove results using it. The following recursive method for computing the
straightening formula is much more useful for proofs based on induction:

Theorem 4.3 Let ¥ be a pseudo cone, and let o € 2 be a simplex.

1. If o is an upper simplex, then str(o) = {o}.

2. If o is a lower simplex, then

str(c) = {B(o)} + Z{str(T) | 7# 0 and 7 < (o)}

Proof If o is an upper simplex, then str(oc) = {o} because the only S-path
that can have an upper source simplex is a trivial 8-path of length 0. Thus
part 1 follows.

To show part 2 let o be a lower simplex. The proof is by induction on the
dual of the precedence order. To show the base of the induction, suppose that
o is maximal in the < order. Since o is a lower simplex, among all simplices
covered by (o) it is both a minimum and maximum in the < order. This is
only possible for . The only B-path from 0 is {0, 3(0)}, and it is easy to verify
that the result holds in this case.

It remains to show the result in general by induction when o is a lower
simplex. Now all S-paths from o must pass through 8(c), and the shortest one
ends at B(0). The rest of the S-paths either end at an upper simplex covered by
B(o) or pass through a lower simplex covered by (o) (other than o). Since the
simplices of length || in one of the S-paths from o are strictly increasing in the
precedence order, it is not possible for a S-path to “double back.” Therefore,
the S-paths from ¢ are partitioned into the following disjoint subsets:

1. A subset consisting of the single path ending at 3(o);

2. One subset for each of the g-paths ending at one of the upper simplices
covered by 3(o); and

3. One subset for each set of S-paths passing through one of the lower sim-
plices covered by S(o).

12



We now apply the inductive hypothesis on each of these subsets; namely, for
each simplex 7 # o covered by B(o), str(7) is the multiset of targets of paths
from 7. Extend each of these paths by prepending ¢ and §(¢). This gives the
set of all S-paths from o, and the multiset of targets of those paths is given by
the expression in part 2. H

The most important property of the straightening law is the following parity
result which forms the basis for one of the hit pairings used by the combinatorial
proof in Section 8.

Theorem 4.4 Let Y be a pseudo cone, for any two simplices T, p € % such that
|T] = |p|, there is an even number of S-paths starting at a lower simplex which
is covered by or equal to p and which ends at T.

Proof In the proof, we will use the multiset notation defined in Section 2.1. In
particular, for a multiset m, the multiplicity of an element x is written m(x), and
the multiset union is written using summation notation to emphasize that the
multiplicities are being summed. For example, the multiset of targets of S-paths
starting at a lower simplex covered by or equal to p is m = -, ., str(f). The
multiplicity of 7 in this multiset is m(7) = >,  ,str(6)(r). This multiplicity
is the number of S-paths starting at a lower simplex covered by or equal to p
and ending at 7. We propose to show that it is even.

The result is trivially true for lower simplices 7 since every [-path ends at
an upper simplex. Therefore, we may assume that 7 is an upper simplex. We
will show this by using induction on p using the dual of the < order. To show
the base of the induction, suppose that p is maximal in the < order. As in
the proof of Theorem 4.3, p is either an upper simplex or is . We will prove
the former case without induction below. In the latter case, 7 is also () because
|7| = |p|.- However, @ is a lower simplex, and no S-path ends at a lower simplex,
so the result is trivially true in this case. Therefore, the base of the induction
follows.

To show the general case, we split the computation into two cases depending
on whether p is upper or lower.

Case 1: p is an upper simplex. In this case, m = Za<,,5tr(9) can be

written as:
m = str(p) + Z str(0) = {p} + Z str(6) (1)

0<p 0<p

Let 0 = (p) so that p = B(¢) and o < p. Equation (1) may then be written in
the following form:

m = {B(o)} + str(o) + Z{str(ﬂ) |6 # o and 6 < B(0)} (2)

13



By Theorem 4.3 and the fact that o is a lower simplex, we can express str(o)
as follows:

str(o) = {B(0)} + Z{SH(@) |6 # o0 and 0 < B(0)} (3)

Substituting equation (3) into equation (2) then gives the following:

m =2({B(0)} + > {stx(0) | 0 # o and 0 < p}) (4)
Therefore, the multiplicity of any element in m is even, and this case follows.

Case 2: p is a lower simplex. Let n = ((p), and construct the following

multiset:

b= Z Z str(6) (5)

n<n 0<p

Every 6 occurring in this double sum differs from 7 by omitting exactly 2 ver-
tices. There are exactly 2 simplices p that are between each 6 and 7, and each
such p omits one of the 2 vertices that are missing from 6. Consequently, in
equation (5) every term str(6) occurs exactly twice. In particular, the multi-
plicity of 7 in b is even.

The first summation in equation (5) is over all simplices that are covered by
or equal 7. One such simplex is p because 7 = 5(p). So this summation can be
split into the case of u = p and the case u # p as follows:

b= > D oste@+ > D str(d) (6)

p<n and p=p 0<p p<n and pzp 0<p
=Y ostr@)+ Y. > ste(d) (7)
O<p p<n and pzp O<p

We now add 2 str(p) to both sides of equation (7), expand one of the str(p) using
Theorem 4.3, and simplify as follows:

b+ 2str(p) = str(p) + str(p) + Z str(0) + Z Z str(9)  (8)
O<p p<n and pp f<p

—str(p) +ste(m) + Y str(n) (9)
p<n and u#p

+) ostr(0)+ > > str(0) (10)

b<p p<n and pzp0<p
={n}+ Z str(9) + Z Z str(f) (11)
0<p p<n and pz£pf 4

where str(n) = {n} since n is an upper simplex. By definition, n = 5(p) so
[n| = |p| + 1. Since |7| = |p|, we must have that n # 7. Therefore, the
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multiplicity of 7 in the multiset {n} is 0. Consequently, when we compute the
multiplicity at 7 on both sides of equation (11) we obtain the following:

b(r) + 2str(p)(r) = Y str(®)(r) + D > str(0)(r)  (12)

0<p p<n and pz#p? <p

In the double sum occurring in equation (12), every simplex u occurs later than
p in the precedence order. We now apply the inductive hypothesis. Recall
that we are using the dual precedence order for the induction. Since p occurs
later than p, it follows that >, ., str(0)(7) is even for every p occurring in
the double sum. We already showed that b(7) (i.e., the multiplicity of 7 in b)
is even in the discussion following equation (5) above. Therefore, every term
in equation (12) is known to be even, except for } -, ., str(f)(7). So this term
must also be even. ll

5 Constructing Pseudo Cones

We now show that pseudo cones can be constructed by extending other pseudo
cones. This is used in later sections to show that some important classes of
posets are pseudo cones.

Theorem 5.1 Let ¥ be a simplicial complex on vertex set V, let v € V be a
vertex, and let U =V — {v}. If £|U and Lkx(v) are pseudo cones, then ¥ is
also a pseudo cone.

Proof Choose PC structures for the simplicial complexes X|U and Lks(v).
Note that although Lks(v) is contained in X|U, we make no assumption that
there is any compatibility between the two PC structures. We will be extending
the PC structure on X|U to all of X.

We first extend the upper-lower partition. Let o € ¥. If ¢ C U, then we
label o as upper or lower the same way as in the PC structure of X|U. Otherwise,
veo,o—{v} CUand o —{v} € Lkx(v). Label o the same way (as upper or
lower) that o — {v} is labeled in Lkx(v).

Next we extend <. Let ¢ and 7 be two simplices of 3. The relation o < 7
is defined to hold if and only if one of the following is true:

l.oCU,7CU and o <7 in X|U.

2.0¢Uand T CU.
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3.veontand o —{v} <7 —{v}in Lkx(v).

In other words, when both simplices are in X|U or both are not in X|U, then <
is induced by < on X|U or Lkx(v), respectively; and every simplex not in X|U
precedes every simplex in 3|U. It is easy to check that < defines a partial order
on .

Next we check that every upper simplex covers a first lower simplex. Let
o € X be an upper simplex. If ¢ C U, then the claim follows immediately
from the PC structure on X|U. Otherwise, we have that v € o. If there are
no simplices covered by o that contain v, then ¢ = {v}, and hence o trivially
covers a first lower simplex. So we may assume that o covers at least one simplex
containing v. Among the simplices covered by o, the ones that do not contain
v are later than the ones that contain v, so we only need to show that there is a
first simplex covered by ¢ among the simplices that contain v. By definition of
the partition for 3, o — {v} is an upper simplex in Lkyx(v). By the PC structure
on Lks(v), there is a first simplex p < (o — {v}), and it is a lower simplex. By
definition of the PC structure in ¥, pU{v} is a lower simplex in ¥ and precedes
all other simplices covered by ¢ and containing {v}. This is what we wished to
show, so it follows that every upper simplex in 3 covers a first lower simplex.

Finally, we need to check that 7 is a bijection from the upper simplices to
the lower ones. We first check that ~ is surjective. Let 7 be a lower simplex of
3.

Suppose that 7 C U. Then 7 is also a lower simplex of X|U. Let o = 5(7)
in the PC structure of X|U. By definition of the PC structure on X, 7 = (o)
holds in the PC structure of .

Next suppose that v € 7. Then 7 — {v} is a lower simplex in Lks(v). Let
p = B(t—{v}) in the PC structure of Lks;(v). It is easy to see that 7 = y(pU{v})
for the v of the PC structure of ¥. Therefore the v of ¥ is surjective.

It remains to show that ~ is injective. Suppose that o; and oo are two
upper simplices such that y(o1) = y(02). Write 7 for (o1). First suppose that
7 CU. Then o1 CU and o9 C U. The PC structure on X|U then immediately
ensures that o1 = 09. The other possibility is that v € 7, in which case v € oy
and v € o9. An easy application of the PC structure of Lks(v) ensures that
o1 — {v} = 03 — {v} and hence that oy = 05. H

We now generalize Theorem 5.1 to a set W of vertices.

Theorem 5.2 Let ¥ be a simplicial complex on vertex set V, let W C V be
a (possibly empty) set of vertices, and let U =V — W. If for every o € S|W
(including o = Q) Stx(c)|U is a pseudo cone, then ¥ is a pseudo cone.
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Proof If W is empty, then U = V and the theorem only asserts that if Sts(0)
is a PC then ¥ is a PC. Since Stx (@) = ¥ this is trivial. Therefore, we may
assume that W is nonempty. If U is empty, then one of the hypotheses of the
theorem is that Stx(0)|0 is a PC, but this is a simplicial complex consisting of
only the empty simplex. So the hypotheses cannot be satisfied, and this case is
also trivial. Therefore, we may also assume that U is nonempty.

We will use induction on n = |W|. The case n = 1 is Theorem 5.1, so we
may assume that n > 1 and that the result is true for m < n. Choose a vertex
v € W. We propose to show that ¥ is a PC by applying Theorem 5.1. To do
this we must show that X|(V — {v}) and Lkx(v) = Stx(v)|(V — {v}) are PCs.

First consider the simplicial complex ¥’ = X|(V — {v}). To show that
¥ is a PC we will use the inductive hypothesis with W’ = W — {v}, and
U =V-—-{v}) =W =V —-W =U. To apply the inductive hypothesis we
must check that for every o € ¥'|W’, we have that Sty (0)|U’ is a PC. It is
easy to check that for every such o, Sty (0)|U’ = Sts(0)|U. Since every such o
is also in X|W, the hypothesis of the theorem implies that Sty (o)|U’ is a PC.
Therefore, the inductive hypothesis applies and ¥’ is a PC.

Next consider ¥’ = Lkx(v). Let V" be the vertex set of X”. To show
that X" is a PC we will use the inductive hypothesis with W"” = V" N W' and
U'=V"-W"=V"NnU. Since |W"| < |W’/| = n—1 < n, the inductive
hypothesis will apply if for every o € ¥”|W”, we have that Sty (0)|U" is a
PC. It is easy to check that for every such o, Sty (0)|U" = Sts(c U {v})|U.
For every such o, o U{v} € X|W, so the hypothesis of the theorem implies that
St (0)|U" is a PC. The inductive hypothesis applies so we conclude that %"
is a PC. Therefore, by Theorem 5.1, ¥ is a PC, and the result follows. Il

We now give a name to the simplicial complexes that can be constructed
using the results of this section.

Definition 5.3 A finite simplicial complex ¥ on V is said to be link reducible
when either 3 consists of a single vertex or there exists x € V' such that

1. Z|(V —{x}) is link reducible, and
2. Lkx(x) is link reducible.

A finite poset P is said to be link reducible when A(P) is link reducible.

Link reducible simplicial complexes are implicit in [17, Corollary A.4.3] which
shows a homological property for such simplicial complexes. Clearly, Theo-
rem 5.2 applies equally well to link reducibility. More precisely,
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Corollary 5.4 Let ¥ be a simplicial complex on vertexr set V, let W C V be
a (possibly empty) set of vertices, and let U =V — W. If for every o € S|W
(including o = () Stx(0)|U is link reducible, then 3 is link reducible.

Proof In the proof of Theorem 5.2, replace “PC” with “link reducible,” and
replace references to Theorem 5.1 with references to Definition 5.3. H

The main significance of link reducibility is the following:
Theorem 5.5 A link reducible simplicial complex is a pseudo cone.

Proof Let ¥ be a link reducible simplicial complex with vertex set V. We
use induction on n = |V|. If n = 1 then ¥ is trivially PC. So we may assume
that n > 1 and that the result is true for m < n. Since n > 1, by Definition 5.3
there exists an x € V such that X|(V — {x}) and Lkx(z) are link reducible. By
the inductive hypothesis, both of these are PCs. By Theorem 5.1, ¥ is a PC. H

The following example shows that the converse of Theorem 5.5 does not
hold:

Example 5.6 Let ¥ on V ={0,1,2,3,4,5} consist of the following simplices:

{0,0,1,2,3,4,5,23,24,14,04,03,05,01,02, 13, 35, 34, 12,
15,25, 45,012,014, 124, 034, 234, 125,025, 135, 035, 345}

Then X is a proper pseudo cone with the precedence order as shown. However,
for every vertex x, the number of simplices in X|(V —{x}) is 21, and the number
of simplices in Lkx(z) is 11. Because a PC must have an even number of
simplices, none of the subcomplexes and links is a PC, and hence none is link
reducible. Therefore, ¥ is not link reducible.

6 Dismantlable and Collapsible Ordered Sets

As an application of the results of Section 5, we examine combinatorial notions of
dismantlability and collapsibility. These notions strengthen the concept of link
reducibility by adding a retraction condition. A retraction is a map f: T — S
where S is a subset of T and f|S is the identity on S. There are various notions
of retraction depending on what kind of map f is required to be. We begin with
a concept that applies to any finite simplicial complex. Later, we will introduce
concepts that apply only to finite posets.
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Definition 6.1 A finite simplicial complex 2 on 'V is said to be link collapsible
when either X consists of a single vertex or there exists x € V' such that

1. There exists a simplicial retraction from V to V —{z},
2. L|(V —{z}) is link collapsible, and
3. Lkx(x) is link collapsible.

A finite poset P is said to be link collapsible when A(P) is link collapsible. Note
that for x € P, Lka(py(z) is the order complex of V(x) U J(x) — {x}.

Example 6.2 It is easy to find and/or verify examples of posets and simplicial
complezes that are link reducible but not link collapsible by using the software at
[4]. The following is one such example:

Proposition 6.3 A finite cone is link collapsible.

Proof Let X be a cone with peak z, and vertex set V. We use induction on
the number n of vertices of 3. If 3 consists only of x, then it is link collapsible
by definition. So we may assume that n > 1 and that the result is true for cones
with m < n vertices. Choose any y € V that is not the same as . Such an
element exists because n > 1. Now both ¥’ = ¥|(V — {y}) and Lkx(y) contain
x and so are cones. Both of these cones have fewer vertices than ¥ (since they
do not contain y), so they are link collapsible by the inductive hypothesis. Tt
remains to find a retraction r from ¥ to 3’. By definition of a retraction, r(v)
must be v for v # y. Define r(y) to be z. Let o € X. If y & o, then o is in ¥’
and r(o) = 0. lf y € 0, then r(0) = (6 —{y}) U{z}. Now X is a cone with peak
z so 0 U{z} € X. Hence the subsimplex (¢ — {y}) U{z} is also in ¥. Since y
is not in (o — {y}) U{z}, it is in ¥’. Therefore, r is a simplicial map from ¥ to
¥’ and the result follows. Hl

For the rest of the section, we restrict attention to posets. In the definition
of link collapsibility, if the simplicial complex is an order complex, then the sim-
plicial retraction need not be order preserving. By requiring that the retraction
be order-preserving, we obtain the notion of connected collapsibility defined in
[17, Definition 4.3.12]. More precisely,
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Definition 6.4 A finite poset P is said to be connectedly collapsible when ei-
ther |P| =1 or there exists x € P such that

1. there exists an order-preserving retraction from P to P — {x},
2. P —{x} is connectedly collapsible, and
3. V(z)U J(z) — {x} is connectedly collapsible.

The notion of connected collapsibility was the motivation for introducing the
notion of link collapsibility. The notions differ in two ways. First, link collapsi-
bility applies to all finite simplicial complexes, while connected collapsibility
applies only to finite posets. Second, a simplicial retraction from P to P — {x}
need not be order-preserving. However, an order-preserving map induces a sim-
plicial map on the order complexes, so if P is connectedly collapsible then P is
link collapsible. Surprisingly, the converse also holds.

Proposition 6.5 A finite poset is connectedly collapsible if and only if it is link
collapsible.

Proof As noted above, connectedly collapsible trivially implies link collapsi-
ble, so we only need to show the converse. Let P be a link collapsible poset.
We will prove the result by induction on |P|. If |P| = 1, then P is trivially
connectedly collapsible so the base of the induction holds.

For the induction step, suppose that |P| > 1 and that the converse holds for
posets with fewer elements than P. Then there is an z € P such that there is a
simplicial retraction r: P — P — {z} for which P — {z} and V(z) U J(z) — {=}
are link reducible. By the inductive hypothesis, both of these are connectedly
collapsible. Let y = r(x). Since r is a simplicial retraction, it is order-preserving
for elements in P — {z}, and if = is comparable with z € P — {z} then y is
comparable with z.

We first consider the case in which = and y are not comparable. If x < z,
then it cannot be the case that y > 2z so one must have y < z. Similarly, if
x > z in P, then y > z. Therefore, r is an order-preserving retraction, and P is
connectedly collapsible.

Next suppose that = > y. If x < z, then it is immediate that y < z. If z > 2
in P, then one cannot have y < z so one must have y > z. Therefore, r is
an order-preserving retraction, and P is connectedly collapsible. Similarly, the
result follows if y > x.

Therefore, we may assume that z and y are comparable and that neither
covers the other. Without loss of generality we may assume that x < y. By our
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assumptions, there exists z such that x < z <y. Now suppose that w > z. Then
w is comparable with x so w is also comparable with y, but w and y both cover
z so it follows that w = y and hence y is the only cover of z. Clearly, mapping z
to y defines an order-preserving retraction P — P — {z}. In [16, Theorem
2] it is shown that a retraction of a connectedly collapsible clique complex
is also a connectedly collapsible clique complex. As noted in Section 2.4, an
order complex is a special case of a clique complex. Therefore, P — {z} is link
collapsible. By the inductive hypothesis, it is also connectedly collapsible. Now
consider the link of z; namely, V(z) U J(z) — {#}. Since y is the only cover
of z, V(2) UJ(z) — {z} is a cone with peak y. Therefore, by Proposition 6.3,
V(2) U J(z) — {#} is link collapsible. By the inductive hypothesis, it is also
connectedly collapsible. It follows that P is connectedly collapsible. Il

The last notion we consider is dismantlability. This was one of the kinds of
poset that was shown in [5] to have the fixed point property and for which the
problem of finding a combinatorial proof was posed. A finite-length poset P is
said to be dismantlable if the identity function on P is in the same connected
component of P¥ as a constant function in P¥. See [17, Section 4.3] for a
more general notion of dismantlability. By [5, Theorem 4.1], a finite poset is
dismantlable if and only if it is reducible to a one-element poset by removing a
sequence of irreducibles, where an irreducible is an element of P that is covered
by or covers exactly one element. As usual, the first case we consider is that of
a cone.

Proposition 6.6 A finite poset cone is dismantlable.

Proof Let P be a poset cone with peak z. We use induction on the number
n of elements of P. If P consists only of x, then it is dismantlable by definition.
So we may assume that n > 1 and that the result is true for poset cones with
m < n elements. Since z is a peak, and n > 1, there exists an element y such
that either z < y or y < z. Clearly y is irreducible. Now P — {y} contains z, so
it is a cone. Since it has fewer elements than P, it is dismantlable. The result
then follows by induction. H

We now show that dismantlability is stronger than connected collapsibility
and consequently a finite dismantlable poset is a PC.

Proposition 6.7 A finite dismantlable ordered set is connectedly collapsible.

Proof Let P be a finite dismantlable ordered set. We use induction on |P|.
The result is trivial when |P| = 1, so we may assume that |P| > 1. As noted
above, there exists an irreducible x € P such that P — {z} is dismantlable. By
the inductive hypothesis, P — {z} is connectedly collapsible. Moreover, it is
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easy to see that mapping = to the unique element that it covers or is covered
by is an order-preserving retraction from P to P — {x}.

It remains to check that @ = J(z)UV (z) — {x} is connectedly collapsible. If
y<z then J(x) = J(y)U{x}, so that @ is a cone with peak y. Dually, if z<y, then
the same argument applies using V() instead of J(z). By Proposition 6.3, @

is link collapsible; and Proposition 6.5 implies that @) is connectedly collapsible.
|

One might think that Proposition 6.3 is a consequence of Proposition 6.6 and
Proposition 6.7. However, Proposition 6.3 applies to general finite simplicial
complexes, while the other two propositions only apply to finite posets.

Example 6.8 Neither Proposition 6.6 nor Proposition 6.7 have converses. The
first example below is dismantlable but not a poset cone; the second example is
connectedly collapsible but not dismantlable.

N

The relationships between the various notions in this section are summarized
in the following:

Corollary 6.9 For a finite simplicial complex, cone = link collapsible = link
reducible = pseudo cone = has a complete matching.

For a finite poset, cone = dismantlable = connectedly collapsible < link col-
lapsible = link reducible = pseudo cone = order complex has a complete match-
mng.

Ezxcept as indicated, none of the converses hold.

Proof For a simplicial complex, the first implication is Proposition 6.3; the
second follows trivially by definition; the third is Theorem 5.5; and the fourth
follows by definition. That the first implication does not have a converse is
shown by either part of Example 6.8; the second is shown in Example 6.2; the
third is shown in Example 5.6; and the fourth is shown in Example 3.4.

For a poset, the first implication is Proposition 6.6; the second is Proposi-
tion 6.7; the third is Proposition 6.5; the fourth follows trivially by definition;
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the fifth is a consequence of Theorem 5.5; and the sixth follows by definition.
That the first two implications do not have converses is shown in Example 6.8;
the fourth is shown in Example 6.2; the fifth is shown in Example 5.6; and the
sixth is shown in Example 3.4. H

7 Truncated Lattices

Let L be a finite lattice. It is easy to check that such a lattice has a maximum
element 1 and a minimum element 0. One of the main results of [2, Corollary
6.3] is that the truncation of a finite, noncomplemented lattice is Q-acyclic. This
result was motivated by Crapo’s computation of the Mobius function of such a
lattice in [12]. The techniques of this section are based on those introduced by
Crapo in his paper and also by Rota in [15].

It follows from the acyclicity result that L has the fixed point property. In
[6] a more general class of posets obtained from finite lattices is shown to be
Q-acyclic. We now strengthen this result by showing that these posets are link
reducible and hence pseudo cones.

Theorem 7.1 Let L be a finite lattice. Let x € L be any element of the trun-
cated lattice, and let B be any subset off/ that contains all the complements of
x and is contained in the set of lower semi-complements of x. Then L-Bis
link reducible. In particular, if x is noncomplemented, then B can be chosen to
be empty so that L is itself link reducible.

Proof LetC={yeL|zAy=0andazVy=1} be the set of complements
of z, and let S = {y € L | 2 Ay = 0} be the set of lower semi-complements of
x. The set B is a set between these two, i.e., C C B C S. Note that any or all
of these three sets could be empty, and B could be equal to C, S or both.

Let P = L — B. We propose to apply Corollary 5.4 to ¥ = A(P), with
W =S8—Band U =L— S sothat P =W UU. Note that U is a filter while W
is an ideal. We must show that for every chain o € A(W), including the empty
chain, Sta(py(0)|U is link reducible.

We first consider the case of an empty chain. Now Sta(py(0)|U = A(U), so
we need to show that the poset U is link reducible. Define a function f: U — U
by f(z) = A z. To show that f is well-defined, let z € U. Since U = L-8,
2 Az>0. Since z Az <z < 1, it follows that f(z) € L. Now z > z A z = f(2)
implies that f(z) Az = f(2). Since f(z) > 0, we have that f(z) ¢ S. Therefore,
f(z) € U and hence f is well-defined. Clearly, f is order-preserving. Let fo
be the identity function on U, and let f; be the constant function with value
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x. It is easy to check that fo > f < fs. Therefore U is dismantlable. By
Proposition 6.7, U is link reducible. If W is empty, then P = U and the result
follows. So for the rest of the proof we may assume that W is nonempty.

Let o be a nonempty simplex of A(W). Then o is a chain {w; < --- < w,} of
elements of W. Now Sta(p)(0)|U consists of those chains 7 of U such that cUT
is a chain of P. Since U is a filter, 7 is such a chain if and only if 7 C V(w,,)NU.
Therefore Stap)(o)|U = A(V(w,) NU). So we need to show that for every
w € W, the poset V(w) NU is link reducible.

Recall that C € B C S and that W = S5 —B. Let w € W. Then w is a lower
semi-complement but not a complement of 2. So wVx # 1. Since wVz > x, we
have that wVz not a semi-complement of z. Therefore wVa € V(w)NU. Define
a function g: V(w)NU — V(w)NU by g(z) = 2 A (wV x). To see that g is well-
defined, let z € V(w)NU. Now z > wand wVz > wso g(z) = zA (wVz) > w.
Hence g(z) € V(w). Next compute g(2)Ax = (zA(wVz))Ax = zA(wVz)Az) =
z Az # 0 because z € U. Therefore, g(z) € U and g is well-defined. Clearly,
g is order-preserving. Now for any z € V(w)NU, 2z > zA(wVz) < wV z,
so g connects the identity function with the constant function having value
w V x. Therefore V(w) NU is dismantlable. By Proposition 6.7, V(w) N U is
link reducible for every w € W. The result then follows from Corollary 5.4. H

Note that the approach in [10] can also be used to show that truncated
noncomplemented lattices are pseudo cones.

Let L be a finite lattice and = € L. We say that y is a lower strong comple-
ment of z if x and y are complements and y is the join of some set of minimal
elements of L. One dually defines an upper strong complement. A finite lattice
is strongly complemented if every element x € L has both an upper strong com-
plement and a lower strong complement. (See [8] for more general definitions.)

Theorem 7.2 Let L be a finite lattice that is not strongly complemented. Then
L is link reducible.

Proof Let z € L be an element that does not have both an upper strong and
a lower strong complement. Without loss of generality, we may assume that x
does not have a lower strong complement.

Let C be the set of ordinary complements of x. By Theorem 7.1, we know
that L — C is link reducible. Let C4 be the set of minimal elements of C; let Cy
be the minimal elements of C'— C7; and so on. Since L is finite, C), is empty
for some n, and C' = Ufil C; is a finite union. We will show by induction that
Ly, =L— Ufim C; is link reducible for every m > 1, and we have already shown
the case m = 1.
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Let y € C,, for some m > 1. Since y is a complement of z, and since x does
not have a lower strong complement, y cannot be a join of minimal elements of
L. Let A be the set of minimal elements of J(y), and let z be the join of A.
Then z < y. Since C,, is the set of minimal elements of Ufim C;, it follows that
z € L. Let @ be the set of all elements of L,, that are comparable with .
Define an order-preserving self-map f: Q@ — @ by f(q) = ¢ A z. To see that f
is well defined, let ¢ € Q. Clearly f(q) < z < y, so we only need to show that
f(q) > 0. If ¢ >y, then ¢ > z and f(¢q) = z > 0. If ¢ < y, then ¢ > a for some
a€ Aand f(q) = qAz>aAz=a > 0. Therefore f is well defined. It is clearly
order-preserving. Now for any ¢ € ), ¢ > ¢ A z < z, so f connects the identity
function with a constant function. Therefore @) is dismantlable.

We now apply Corollary 5.4 to A(Ly,41) with W = C,, and U = L,,.
We need to show that Sta(z,.,,)(0)|U is link reducible for every chain o of
W = C),. Since no two elements of C,,, are comparable, o is either empty or a
single element. If o is empty, then the star is the order complex of U = L,,, which
is link reducible by the inductive hypothesis. If o = {y}, then the star is the
order complex of ) which is dismantlable and hence link reducible. Therefore,
Ly, 41 is link reducible, and by induction, L is link reducible. I

8 The Combinatorial Proof of the Fixed Sim-
plex Property

The main result of this section is a direct combinatorial proof that finite pseudo
cones have the fixed simplex property. We first define the notion that forms the
basis of the proof.

Definition 8.1 Let X be a pseudo cone, and let f be a simplicial self-map. A
hit s an ordered pair (o,7) such that:

1. o<1 1nd;
2. |f(o)] = |o|; and
3. T e str(f(0)).

Note that by the last condition above, T must be an upper simplex. The multi-
plicity of a hit is the multiplicity of T in str(f(0)).

A hit is a coincidence that is weaker than a fixed simplex.
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Proposition 8.2 Let X be a pseudo cone, and let f be any simplicial self-map.
If o is a fixed simplex of f then exactly one of the following conditions holds:

1. o is an upper simplex and (o,0) is a hit, or

2. o is a lower simplex and (o, 8(c)) is a hit.

Conversely, if (o,7) is a hit and o is a fized simplex of f, then T is an upper
simplex which equals either o or (o).

Proof Let o bea fixed simplex of f. If o is an upper simplex, then str(f (o)) =
str(c) = {o}. By Definition 8.1, (0,0) is a hit. If ¢ is a lower simplex, then
str(f(o)) =str(o) = {8(0)}+- -+ by Theorem 4.3. Therefore, 3(c) € str(f (o)),
so that (o, 8(0)) is a hit.

Conversely, suppose that (o,7) is a hit and that f(o) = 0. If ¢ is an upper
simplex, then str(f(c)) = str(c) = {0} as above, so the only possibility for
is 0. If 0 is a lower simplex, then str(f(c)) = str(o) may have many simplices
whose length is |o| + 1. Because (o,7) is a hit, we know that 7 € str(c). Let
n = (7). Then n precedes every simplex covered by 7 in the < order. In
particular, 1 precedes or equals 0. However, o precedes or equals every lower
simplex of length |o| that occurs in str(o). Therefore, n = ¢ and 7 = 8(0), and
the result follows. H

Proposition 8.3 Let X be a pseudo cone, and let f be a simplicial self-map.
A pair (o,7) of simplices is a hit if and only if o <71, |f(0)] = |o|, and there
is a B-path from f(o) to 7. Furthermore, the multiplicity of a hit (o,7T) is the
number of S-paths from f(o) to 7.

Proof The result follows immediately from Definition 4.1. l
The combinatorial proof of the fixed simplex property is based on partitions
of hits into pairs. The existence of such pairings depends on knowing that

particular sets of hits have even cardinality. The basis for the combinatorial
proof is the following parity result:

Theorem 8.4 Let ¥ be a pseudo cone, and f a simplicial self-map of 3.

1. For every simplex 7 € X, the number of hits (counting multiplicities) that
have T as their second coordinate is always even.

26



2. For every simplex o € 3, the number of hits (counting multiplicities) that
have o as their first coordinate is odd if and only if o is a fived simplex

of f.

Proof  We first show part 1. Let 7 € ¥ and let | = |7|. There are exactly
[ 4+ 1 simplices that are covered by or equal to 7. To show the parity condition,
we consider the following cases:

1. |f(r)] <1 —=1. Then |f(0)| < |o|, for any o < 7, and there are no hits
having 7 as the second coordinate.

2. |f(r)| =1—1. Then |f(0)| = |o| for exactly two simplices o1 and o9 that
are covered by 7. Moreover, f(o1) = f(o2) = f(7). So the multiplicity of
the hit (o1, 7) is the same as the multiplicity of the hit (o2, 7). It follows
that the total number is even.

3. |f(7)] = l. Then f is bijective on the simplices contained in 7. In particu-
lar, the set {6 | 8 < f(7)} is the same as the set {f(c) | o < 7}. Applying
Theorem 4.4 with p = f(r) gives that > j < ;) str(6)(7) is even and
hence )" . str(f(c))(r) is even. Since every o <7 has the property
that |f(o)] = |o|, the sum of the multiplicities of the hits of the form
(0,7) is even.

4. |f(7)| > I. This is impossible because f is a simplicial map.

These are all the cases, so part 1 holds.

We now show part 2. Let o € 3. For every p € ¥ such that |p| = |o]|, define
Q(o,p) = {7 | o C 7 and 7 € str(p)}, where the multiplicity of 7 in Q(o, p) is
the multiplicity of 7 in str(p). We will show that Q(o, p) has odd cardinality if
and only if o = p.

We first consider the case in which o = p, i.e., the parity of Q(o,0). If ¢
is an upper simplex, then str(p) = str(o) = {o}. Therefore, Q(o,0) = {o}
in this case. Now let o be a lower simplex and let 7 € Q(c,0). Then 7 is
an upper simplex and so cannot coincide with o. Thus o < 7. However, o is
the first simplex in the < order among all of the lower simplices covered by
the upper simplices in str(p) = str(c). Therefore y(7) = ¢ and 7 = 3(0), and
hence Q(o,0) = {B(0)}. We conclude that |Q(o, )| is always odd, and in fact,
always 1.

It remains to determine the parity of Q(o,p) in general. We do this by
induction on the cardinality of the multiset str(p). Since |str(p)| > 1, the base
of the induction is the case |str(p)| = 1, which occurs in just two ways. The
first is when p is an upper simplex, and the second is when p = (). In the former
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case, the only choice for 7 is p, so that o C p. Since |p| = |o|, we must have
that o = p, and we have already computed Q(o,0). In the latter case, since
lo| = |p|, ¢ = 0, and we have already computed Q(@,?). Accordingly, we may
assume that |str(p)| > 1, that o # p, and that p is lower.

By Theorem 4.3, str(p) is the multiset union {3(p)} + (2212 str(¢;)), where
I1=1B8(p)| and ¢1 = p, (2, ..., are the simplices covered by S(p). Therefore,

Olo.p) = {{/3<p)} + (T, Qe.6)), if o C Blp),
’ Yiea Q0. G), if o ¢ B(p).

Since |str(¢;)| < |str(p)| for any ¢ > 2, the inductive hypothesis implies that
Q(0,¢;) has odd cardinality if and only if ¢ = ¢;. To compute the parity of
Q(o, p), there are two cases to consider:

1. 0 C B(p). Since we have assumed that o # p, we have that ¢ = (; for
some j > 1. In this case, o # (; for i # j. So Q(o,(;) has odd cardinality,
and Q(o, (;) has even cardinality for ¢ # j by induction. Therefore, Q (o, p)
has even cardinality as desired.

2. ¢ ¢ B(p). This implies that o # ¢; for any ¢ > 1, so every Q(o,(;) for
i > 1 has even cardinality by induction, and hence Q(o, p) does also.

Therefore, Q(o, p) has odd cardinality if and only if o = p. We now use this
result to characterize the hits having first coordinate o. If |f(o)| < |o|, then
there are no hits, so the result follows in this case. If |f(o)| = |o], then the
multiset of hits is {(o,7) | 7 € Q(o, f(0))}. As we have just shown, this has
odd cardinality if and only if ¢ = f(¢), and so part 2 holds. H

It is easy to see that the parities in Theorem 8.4 are unaffected by the
expedient of removing all hits that have even multiplicity and replacing each hit
with odd multiplicity by a single hit. We will abuse notation and refer to such
hits as odd hits. The odd hits form a graph whose vertices are the odd hits and
the edges are pairs of hits that share a first or second component. We call this
the hit graph.

Theorem 8.5 Let 3 be a finite pseudo cone, and f a simplicial self-map of 3.
Let G be the hit graph for ¥ and f. Then there is a nonempty collection of
hit-disjoint paths in G whose endpoints are hits of the form (o,7) where o is a
fized simplex. In particular, X has at least one nonempty fized simplex.

Proof We begin by choosing subsets F; and Fy of the edges of G. For a
simplex 7 € X, the set {(o,7) is an odd hit} is even. Choose a partition of this
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set into 2-element subsets. Each 2-element subset is an edge of G. The subset F}
consists of all such edges for every simplex 7 € 3. Similarly, for a simplex o € ¥
that is not fixed by f, the set {(o,7) is an odd hit} is even. Choose partitions
as before to form the the set F5 of edges. Finally, for a simplex o that is fixed
by f, the multiset {(o,7) is a hit} has exactly one element by Proposition 8.2,
so the notions of hit and odd hit coincide in this case. Such an odd hit is not on
any edge of F5, and such odd hits correspond bijectively with the fixed simplices
of f. Because of this bijection, we will abuse notation and refer to these hits as
“fixed simplices.”

Now it is easy to check that Iy N Fy = (). Let F' = F; U Fy. By construction,
every odd hit occurs on exactly one edge of F7, and every odd hit that is not a
fixed simplex occurs on exactly one edge of F5. Thus a fixed simplex is incident
on exactly one edge of F' while all other odd hits are incident on exactly two
edges of F. It is easy to see that the connected components of F' are of two
kinds. If a connected component has no fixed simplices, then it forms a cycle. If
a connected component has at least one fixed simplex, then it must necessarily
have exactly two of them, and they are the endpoints of a path in the graph.
These are the paths required by the theorem. It might be worth mentioning
that this last part of the proof could be regarded as going back to Euler, who
showed that the Seven Bridges of Koénigberg problem could not be solved by
using a similar argument[11]. In any case, there is always exactly one “trivial”
fixed simplex; namely, the empty simplex. Therefore, there is at least one path.
The result then follows. Il

For either kind of connected component of the graph F' in the proof above,
the edges alternate between those in F; and F;. So the cycles always have
an even number of edges, and the paths have an odd number of edges. If the
self-map f is the identity map, then every simplex is fixed, so every connected
component of F' consists of a single edge. These edges correspond bijectively
with the complete matching of the pseudo cone structure.

Corollary 8.6 Fvery finite PC ordered set has the fixed point property.

Proof This follows immediately from Theorem 8.5 and Proposition 2.2. H

Theorem 8.5 and Corollary 8.6 give the promised combinatorial proof that
finite PC posets have the fixed point property. In particular, we obtain combi-
natorial proofs that finite dismantlable ordered sets and truncated noncomple-
mented lattices have the fixed point property. This resolves the open problem
stated in [5].
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9 Fixed Point Sets

In general, one cannot say very much about the structure of of the fixed point set
of an order-preserving self-map. For example, the fixed point set of an acyclic
poset need not be acyclic. This was shown in [6, Example 2.2]. About all that
one can say in general about a fixed point set of an acyclic poset is that its
Mbobius function (reduced Euler characteristic) is zero.

However, when one has an additional structure on a poset, then it may be
possible to show that the fixed point set also has this structure. This is true for
poset cones. To see why, let P be a poset cone with peak p, and let f be an
order-preserving self-map of P. Since p is a peak, f(p) is comparable with p,
say f(p) > p. By the Abian-Brown Theorem[1], there is a smallest fixed point
above p and all fixed points will be comparable to it. Similarly for the case
f(p) < p. So the fixed point set is a poset cone.
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