
Abstract

BaseVISor is a forward-chaining inference engine
based on a Rete network optimized for the process-
ing of RDF triples. BaseVISor has been outfitted
to process RuleML and R-Entailment rules. In the
case of RuleML, n-ary predicates are automatically
translated into binary predicates and reified state-
ments that encapsulate the n-ary predicates’ argu-
ments. For R-Entailment, the R-Entailment axi-
oms, axiomatic triples and consistency rules are
imported into the engine and then used to derive all
triples entailed by a base set of triples. Operation
of the system will be demonstrated using sample
rule sets employing RuleML and R-Entailment.

BaseVISor [1] is a Rete-based [2], forward-chaining infer-

ence engine optimized for the processing of RDF triples. It

is similar to other Rete-based engines such as JESS [3] and

CLIPS [4]. The primary difference from these engines is

that BaseVISor uses a simple data structure for its facts (i.e.,

triples) rather than arbitrary list structures, which permits

greatly enhanced efficiency in pattern matching which is at

the core of a Rete network. In BaseVISor, a clause within

the body or head of a rule either represents an RDF triple or

invokes a procedural attachment (either built-in or user de-

fined). BaseVISor is written in Java and includes an API

for easily adding user-defined procedural attachments. A

large subset of the built-ins defined for SWRL [5] are in-

cluded in the BaseVISor distribution as built-in procedural

attachments. The beta release of BaseVISor will be avail-

able for free download at Versatile Information Systems’

homepage: http://www.vistology.com.

BaseVISor’s native language uses a simple XML syntax to

define facts, create rules and issue queries. A fact is a triple

defined by subject, predicate and object elements, e.g.:

<triple>

 <subject resource=”#Bill”/>

 <predicate resource=”#age”/>

 <object datatype=”xsd:integer”>45</object>

</triple>

The subject and predicate elements of a fact always refer to

a resource specified using the resource attribute. The

object element of a fact can be either a resource or a literal,

in which case the value is defined in the content of the ele-

ment and the XSD datatype of the literal is specified using

the datatype attribute. The subject, predicate and object

elements can appear in any order within a triple element.

Rules are defined within a rulebase with each rule con-

sisting of a body element and a head element (occurring in

either order). The name attribute can be used to assign

names to a rulebase or rule. An example of the typical

structure of a rule within a rulebase is shown here:

<rulebase name=”Rule Set A”>

 <rule name=”Rule 1”>

 <body>

 <triple>…</triple>

 </body>

 <head>

 <assert>

 <triple>…</triple>

 </assert>

 </head>

 </rule>

 …

</rulebase>

The body of a rule usually contains one or more triples that

share the syntax used by facts described above except that

triples within rule bodies can contain variables. Variables

are indicated by providing the variable’s name as the value

of the variable attribute on the subject, object or predicate

element, e.g.:

<triple>

 <subject variable=”X”/>

 <predicate resource=”#spouse”/>

 <object variable=”Y”/>

</triple>

BaseVISor: A Forward-Chaining Inference Engine

Optimized for RDF/OWL Triples

Christopher J. Matheus, Robert Dionne, Douglas F. Parent
Versatile Information Systems, Inc., Framingham, Massachusetts, U.S.A

Kenneth Baclawski and Mieczyslaw M. Kokar
Northeastern University, Boston, Massachusetts, U.S.A

An abbreviated syntax is also provided that greatly simpli-

fies the writing of triples for multiple properties that share

the same subject. In this alternative syntax an Individual

element is used to identify the subject and an unlimited

number of predicates pertaining to the individual can be

included in the element’s body with their associated re-

source/variable values. Furthermore, the objects of the

predicates can be additionally qualified with predicates of

their own, and so on to any arbitrary depth. For example,

the following statement says that Bob has a brother named

Bill and a sister named Jill and that Bill is 45 years old and

is married to Sally who has a sister named Kate:

 <Individual resource=”#Bob”>

 <brother resource=”#Bill”>

 <age datatype=”xsd:integer”>45</age>

 <spouse resource=”#Sally”>

 <sister resource=”#Kate”/>

 </spouse>

 </brother>

 <sister resource=”#Jane”/>

 </Individual>

This abbreviated syntax has the advantage of being more

succinct (and thus less prone to common typographical er-

rors) while more clearly depicting the structural organiza-

tion of the data (making it easier to catch logical errors).

In addition to triples, bodies may also contain procedural

attachments, either built-ins or user-defined. Built-in proce-

dural attachments include print/println to output text to

the console, bind for explicitly binding a value to a vari-

able, assert for asserting a triple into the fact base, re-

tract for retracting a triple from the fact base, gensym for

generating a symbol to represent a resource, not for match-

ing on the absence of one or more triples within the fact

base, equality/inequality functions (i.e., >,<,>=,<=,=,

!=), common mathematical functions (e.g., +,-,*,/,mod,

**) and date and string manipulation functions. Any proce-

dural attachment may occur within the head of a rule except

for not which is restricted to use within rule bodies.

BaseVISor may be embedded within a Java application or it

can be used as a stand alone inference engine. Use of the

stand alone version involves writing an XML file containing

facts (i.e., raw triples), a rulebase and possibly one or more

queries which is then submitted to the standard BaseVISor

Batch processor. It is also possible to write statements to

include other files in the batch processing. In particular you

can include external rulebases with the include element

and import an RDF document with the importRDF element.

Embedding BaseVISor within a Java application permits

finer control of the loading and operation of the inference

engine and allows the use of user-defined procedural at-

tachments. Such attachments can be used in the body of

rules to perform tests that are more appropriately handled by

procedural code; in the context of rule bodies or heads, pro-

cedural attachments may be used to interface to other appli-

cations (e.g., a database or web service).

BaseVISor is also able to process RuleML [6] rulesets by

transforming them into BaseVISor rulesets. In cases where

predicates of arity greater than two are used within a

RuleML rule, BaseVISor will automatically convert them

into an equivalent binary predicate representation along the

lines suggested in [7].

R-Entailment [8] is a language proposed by H. ter Horst that

combines RDF, RDFS and a part of OWL DL with simple

Horn-style rules. Desirable characteristics of this language

are that it is finite (unlike OWL which inherently entails an

infinite model), it is decidable (under certain conditions) and

its complexity is P (under certain constraints). The R-

Entailment axioms have been implemented as BaseVISor

rules that can be preloaded into BaseVISor’s Rete network.

In this way it becomes possible to use BaseVISor to deduce

the set of triples entailed by an RDF/OWL document that

conforms to the R-Entailment specifications.

BaseVISor is available for research purposes from

http://www.vistology.com/basevisor.

References

1 C. Matheus, K. Baclawski and M. Kokar. BaseVISor: A

Triples-Based Inference Engine Outfitted to Process

RuleML and R-Entailment Rules. In Proc. of the 2
nd

 In-

ternation Conference on Rules and Rule Languages for

the Semantic Web, Athens, GA, Nov. 2006.

2 C.L. Forgy. Rete: a fast algorithm for the many pat-

tern/many object pattern match problem. Artificial Intelli-

gence, 1982, pp.17-37.

3 Jess homepage. http://herzberg.ca.sandia.gov/jess/

4 CLIPS homepage. http://www.ghg.net/clips/CLIPS.html

5 Ian Horrocks, Peter F. Patel-Schneider, Harold Boley,

Said Tabet, Benjamin Grosof and Mike Dean. SWRL: A

Semantic Web Rule Language Combining OWL and

RuleML, 2004. http://www.daml.org/rules/proposal/

6 RuleML homepage: http://www.ruleml.org/

7 N. Noy, A. Rector, P. Hayes and C. Welty. Defining N-

ary Relations on the Semantic Web. W3C Working Group

Note 12 April 2006. W3C Working Group Note 12 April

2006. http://www.w3.org/TR/swbp-n-aryRelations/

8 H. ter Horst. Combining RDF and Part of OWL with

Rules: Semantics, Decidability, Complexity. In Proc. of

the Fourth Inter. Semantic Web Conference. Y. Gil et al.

(Eds.): ISWC 2005, LNCS 3729, pp. 668–684, 2005.

