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The Semantic Web is an extension of the current World Wide Web in which infor-
mation is given a well-defined meaning, so that computers and people may more
easily work in cooperation. This is done by introducing a formal logical layer to the
Web in which one can perform rigorous logical inference. However, the Semantic
Web does not include a mechanism for empirical, scientific reasoning which is based
on probabilistic inference. Bayesian networks are a popular mechanism for mod-
eling uncertainty and performing probabilistic inference in biomedical situations.
They are a fundamental probabilistic representation mechanism that subsumes
a great variety of other probabilistic modeling methods, such as hidden Markov
models and stochastic dynamic systems. In this paper we propose an extension to
the Semantic Web which we call the Bayesian Web that supports Bayesian net-
works and that integrates probabilistic inference with logical inference. Within the
Bayesian Web, one can perform both logical inference and probabilistic inference
as well as reconcile stochastic models and perform statistical decisions. We dis-
cuss how the Bayesian Web would be used for representing and reasoning within
biomedical ontologies.

1. Introduction

Probabilistic modeling has a long history, and it is the basis for the empirical
methodology that has been used with great success by modern scientific dis-
ciplines. Stochastic models have traditionally been expressed using math-
ematical notation that was developed long before computers and graphical
user interfaces became commonly available. A Bayesian network (BN)? is
a graphical mechanism for specifying the joint probability distribution of a
set of random variables. As such BNs are a fundamental probabilistic rep-
resentation mechanism for stochastic models. The use of graphs provides
an intuitive and visually appealing interface whereby humans can express
complex stochastic models. This graphical structure also has been used in
the design of efficient algorithms for data mining, learning and stochastic
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inference.

The range of potential applicability of BNs is large, and their popularity
has been growing rapidly. BNs have been especially popular in biomedical
applications where they have been used for diagnosing diseases® and study-
ing complex cellular networks®, among many other applications. The BNs
that have been developed for disease diagnosis are especially large.

The Semantic Web (SW) was proposed by Tim Berners-Lee and his
colleagues? as a means of introducing formal semantics to the World Wide
Web. One of the fundamental features of the Web is its support for resource
identifiers (URIs) which make it possible for documents to refer to each
other as well as for multiple documents to make references to the same
resource. The SW goes one step further and adds formal semantics to
the resources identified by URIs and to the links between resources. All
reasoning in the SW is formal and rigorous.

Although very large BNs are now being developed, each BN is con-
structed in isolation. Interoperability of BNs is possible only if there is a
framework for one to identify common variables. In this paper we propose
to use the SW as the basis for supporting BN interoperability. This is done
by adding BN layer to the SW. We call the resulting framework the Bayesian
Web (BW). This framework makes it possible to perform operations such
as:

e Use a BN developed by some other group almost as easily as one
now navigates from one Web page to another.

e Make stochastic inference and statistical decisions using informa-
tion from one source and a BN from another source.

e Fuse BNs obtained from disparate sources by identifying variables
that measure the same phenomenon.

e Reconcile and validate BNs by checking mutual consistency.

This paper begins with some background material on BNs and stochastic
inference including some examples from medical diagnosis. In Section 3 we
discuss the basic requirements for interoperability of BNs which are the
motivation for this paper. Section 4 then gives some background on the
SW. In Section 5 we give a concrete proposal for a BW which combines BNs
with the SW. The paper ends with some conclusions and future directions
for this work.
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2. Bayesian Networks and Inference

A BN is a graphical formalism for specifying a stochastic model. The
random variables of the stochastic model are represented as nodes of a
graph. We will use the terms “node” and “random variable” interchange-
ably. While one would think that the notion of a random variable is unam-
biguous, in fact it is a combination of two different concepts. First, there is
the phenomenon that is being observed or measured, such as one toss of a
coin or the measurement of a person’s blood pressure. The second concept
is the probability distribution of the phenomenon. It is the combination of
these two notions which is the mathematical concept of a random variable.
The relationship between the phenomenon and its probability distribution
is many-to-many. Many phenomena have the same probability distribution,
and the same phenomenon can be distribution in many ways. The reason
why a phenomenon does not uniquely determine its probability distribution
is due to the notion of conditioning. As one observes related events, the
distribution of a phenomenon changes. The phenomenon is the same, what
changes is the knowledge about it (or more precisely about one instance of
it).

The edges denote dependencies between the random variables. This is
done by specifying a conditional probability distribution (CPD) of a node by
specifying the conditional probability of each value of the node given each
combination of values of the nodes at the other ends of the incoming edges.
The nodes at the other ends of the incoming edges are called the parent
nodes. A CPD is a function from all the possible values of the parent nodes
to probability distributions on the node. Such a function has been called a
stochastic function®. If a node has no incoming edges, then its CPD is just
the probability distribution of the node. It is also required that the edges
of a BN never form a directed cycle: a BN is acyclic. If two nodes are not
linked by an edge, then they are independent.

Some of the earliest work on BNs; and one of the motivations for the
notion, was to add probabilities to expert systems used for medical diagno-
sis. The Quick Medical Reference Decision Theoretic (QMR-DT) project®
is building a very large (448 nodes and 908 edges) BN. Consider, for ex-
ample, the BN shown in Figure 1. The BN is a very small diagnostic BN
which specifies a stochastic model with four random variables: (1) Flu, i.e.,
a patient has influenza, (2) Cold, i.e., a patient has one of a number of
milder respiratory infections, (3) Perceives Fever, i.e., the patient perceives
having a fever, (4) Temperature, the continuous random variable represent-
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4
Perceives Fever
Fl - TRUE FALSE
u Perceives Flu=F & Cold=F 001 099
Flu=F&Cold=T 0.1 0.9
Flu=T&Cold=F 0.9 0.1
PT(F‘IU)=0 0001 Fever Fu=T&Cold=T 095  0.05
Temperature

Pr(COId)=001 Temperature
Mean Std Dev
Flu=F&Cold=F 37 0.5
Flu=F&cCold=T 37.5 1
Cold Flu=T& Cold=F 39 2
Flu=T&Cold=T 39.5 2.5

Figure 1. Example of a BN for medical diagnosis. Rectangles represent discrete random
variables and ovals represent continuous random variables.

ing a measurement of the patient’s body temperature. Note that three of
the random variables are Boolean, the simplest kind of discrete random
variable, and that the fourth random variable is continuous. Two of the
nodes have no incoming edges, so their CPDs are just PDs, and because
the nodes are Boolean, they can be specified with just one probability. We
assume that Pr(Flu) = 0.0001 and that Pr(Cold) = 0.01, reflecting the
fact that influenza is far less common than the common cold.

The CPD for the Perceives Fever (PF) node has two incoming edges, so
its CPD is a table that gives a conditional probability for every combination
of inputs and outputs. The CPD for the Temperature (T) node has two
incoming edges, so its CPD will have 4 entries as in the case above, but
each entry is a continuous probability distribution.

BNs have a number of other names. One of these, belief networks, hap-
pens to have the same acronym. BNs are also called probabilistic networks,
directed graphical models, causal networks and “generative” models. The
last two of these names arise from the fact that the edges can be interpreted
as specifying how causes generate effects. One of the motivations for in-
troducing BNs was to give a solid mathematical foundation for the notion
of causality. In particular, the concern was to distinguish causality from
correlation. A number of books have appeared that deal with these issues
such as one by Pearl'? who originated the notion of BNs. For causation in
biology see'!. Other books that deal with this subject are*!3.

One of the main uses of a BN is to make deductions. A BN acts some-
thing like a rule engine. In a rule engine, one specifies a collection of if-then
rules, called the rule base. One can then input a collection of known facts
(typically obtained by some kind of measurement or observation). The rule



July 19, 2004 22:55 Proceedings Trim Size: 9in x 6in bw

engine then explicitly (as in a forward chaining rule engine) or implicitly
(as in a backward chaining rule engine) infers other facts using the rules.
The set of specified and inferred facts form the knowledge base. One can
then query the knowledge base concerning whether a particular fact or set
of facts has been inferred.

As in a rule engine, one can specify known facts to a BN (via measure-
ment or observation), and then query the BN to determine inferred facts.
Specifying known facts is done by giving the values of some of the random
variables. The nodes that have been given values are termed the evidence.
One can then choose one or more of the other nodes as the query nodes.
The answer to the query is the JPD of the query nodes given the evidence.
Since a BN is a mechanism for representing a JPD, the result of a BN
inference is BN on a subset of the nodes of the original BN.

3. Requirements for Bayesian Network Interoperability

The most fundamental requirement of BN interoperability is to have a
common interchange format. However, this alone would not be enough for
one to automatically combine data and BNs from different sources. In this
section we discuss the requirements for BNs to be fully interoperable in the
sense discussed in the introduction.

The following are the requirements for BN interoperability and the pro-
posed BW:

(1) Interchange format. There already exists an format for represent-
ing BNs, called the XML Belief Network format (XBN)'*. This
XML file format was developed by Microsoft’s Decision Theory and
Adaptive Systems Group. This format evolved from a standard-
ization effort to develop the Bayesian Network Interchange Format
(BNIF).

(2) Common variables. It should be possible for the same variable to
appear in different BNs. For example, whether a person has the
flu should be the same variable no matter which BN it appears in.
Being able to specify or to deduce that two entities are the same is
a fundamental feature of the Semantic Web. Of course the context
within which a BN is valid affects the meaning of the variable. For
example, one might be interested only in the occurrence of the flu in
Spain in 1918. This would be very different from the flu in Australia
in 2004.

(3) Annotation and reference makes it possible to specify the context
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of a BN. In so doing one also specifies the meaning of the variables.
One should be able to refer to a BN and for a BN to refer to other
information. In other words, the BN is itself an entity about which
one can make statements. Annotations are also important for au-
thentication and trust. The BN itself can claim that it arises from
a source that one trusts, but one would only believe it if a trusted
source refers to the BN.

(4) Open hierarchy of distribution types. New probability distributions
and conditional probability distributions can be introduced by sub-
classing other distributions.

(5) BN components. A BN can be constructed from known pieces. It
can also be constructed by instantiating a template (possibly more
than once). A BN component is a partially specified BN.

(6) Information fusion. Multiple BNs can be combined to form new
BNs. This is a very different form of combination than component-
based construction. This technique is called information fusion.
Inference is, in fact, a form of information fusion because the output
of inference is a JPD on the query nodes which can be expressed as
another BN.

4. The Semantic Web

The increasing diversity and complexity of information available electroni-
cally has spurred interest in the notion of formal ontologies and in automat-
ing many ontology-related activities that were traditionally performed man-
ually. Web-enabled agents represent one technology for addressing this
need®. These agents can reason about knowledge and can dynamically
integrate services at run-time. Formal ontologies are the basis for such
agents.

The Resource Description Framework (RDF)” and the Web Ontology
Language (OWL)!2 are ontology language standards developed under the
auspices of the World Wide Web Consortium. RDF is the basic language
with the minimum number of constructs necessary for expressing ontologies.
OWL adds features to RDF in a series of three versions (or levels), called
OWL Lite, OWL-DL and OWL Full.

The DL in OWL-DL stands for “description logic”. This is a form
of logic that class construction as the primary modeling mechanism. A
class is essentially the same as the notion of set in mathematics. A class is
constructed by specifying its members using other classes. For example, the
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definition of autoradiography is “A technique that uses X-ray film to locate
radioactively labeled molecules or fragments of molecules.” From a DL
perspective, autoradiography is a class consisting of those members of the
technique class that use X-ray film to locate radioactively labeled molecules
or fragments of molecules. Queries to an OWL-DL ontology would mostly
be concerned with whether or not a specific entity belongs to a specified
class.

Expressing BNs using richer ontology languages, such as RDF or OWL,
would be beneficial for a number of reasons. One can take advantage of
language constructs that exist in RDF and OWL that cannot be expressed
in XML alone. RDF and OWL have inferencing capabilities that XML
does not have. A rules language is being developed for OWL. If BNs were
expressed using OWL, then it should be possible to specify both logical
rules and probabilistic rules in the same document.

5. Combining the Semantic Web with Bayesian Networks

We now give a concrete proposal for how the Semantic Web can be aug-
mented to include BNs and stochastic inference. The architecture for the
Semantic Web consists of a series of layers as shown in Figure 2. This figure
was taken from a presentation by Tim Berners-Lee!. The layers that are
relevant to the BW are the following:

(1) The Resource Description Framework (RDF) layer introduces se-
mantics to XML. It makes it possible to link one resource to another
resource such that the link and resources may be in different Web
pages. RDF is a minimalist semantic layer with only the most basic
constructs.

(2) The Web Ontology (OWL) layer expands on the RDF layer by
adding more constructs and richer formal semantics.

(3) The Logic layer adds inference. At this layer one can have both
resources and links that have been inferred. However, the inference
is limited by the formal semantics specified by RDF and OWL.

(4) The Proof layer adds rules. Rules can take many forms such as
logical rules as in the Logic Layer, search rules for finding documents
that match a query, and domain-specific heuristic rules.

The proposed BW consists of a collection of ontologies that formalize
the notion of a BN together with stochastic inference rules. The BW re-
sides primarily on two of the SW layers: the Web Ontology layer and the
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Figure 2. The Semantic Web architecture.

Proof layer. The BW ontologies are expressed in OWL on the Web On-
tology layer, and the algorithms for the stochastic operations are located
on the Proof layer. By splitting the BW into two layers, one ensures that
BW information can be processed using generic SW tools which have no
understanding of probability or statistics. The result of processing at the
OWL layer is to obtain authenticated and syntactically consistent BNs.
The probabilistic and statistical semantics is specified on the Proof layer
which requires engines that understand probability and statistics.

6. The Bayesian Web Ontology

The ontology for BNs is built from three sub-ontologies, each of which
imports the previous ones:

(1) The ontology of elementary probability distributions.
(2) The ontology of networks of conditional probability distributions.
(3) The ontology of phenomena which can be modeled using BN.

In this section we construct these ontologies

The top level concept of the BW is the BN which is used to model
network of more elementary phenomena. See Figure 3. A BN consists of a
collection of nodes, each of which represents one elementary phenomenon.
Think of a node as a random variable whose probability distribution has
not yet been specified. A node has a range of values. For example, the
height of a person is a positive real number. A Node can depend on other
Nodes. A dependency is called a dependency arc. It is convenient to order
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distribution
BN BND
description : String m
im]:urt hat
node
dependsOn distributedby
DataType Node Nodelist ConditionalDistribution
range '\’:7

Figure 3. Ontology for Bayesian Networks

the dependencies of a single node, so in Figure 3, a Node an depend on
a NodeList, which consists of a sequence of Nodes. The order of the de-
pendencies is used when the conditional probabilities are specified. A BN
can import another BN. The nodes and dependencies of an imported BN
become part of the importing BN.

The most complex part of a BN is its joint probability distribution which
is specified using a collection of conditional and unconditional probability
distributions. Since a BN can have more than one probability distribution,
the notion of a BN distribution (BND) is separated from that of the BN.
There is a one-to-many relationship between the concepts of BN and BND.
A BND consists of a collection distributions, one for each node in the BN.
A node distribution (ND) relates one node to its conditional (probability)
distribution.

The notion of a conditional (probability) distribution is the main con-
cept in the conditional probability ontology, as shown in Figure 4. A condi-
tional distribution has three special cases. It can be a conditional probability
distribution table (CPT), a general stochastic function (SF) or an (uncon-
ditional) probability distribution. The first of these is used by phenomena
with a small number of possible values (called states in this case). Most
current BN tools support only this kind of conditional probability specifi-
cation.

A CPT is defined recursively, with one level for each dependency. There
is one conditional probability entry (CPE) for each value of the first parent
node. Each CPE specifies a weight and a CPT for the remaining parent
nodes. Weights are nonnegative real numbers. They are normalized to
define a probability distribution. At the last level one uses an unconditional
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Figure 4. Ontology for Conditional Probability Distributions

probability distribution.

A SF is also defined recursively, but instead of using an explicit collection
of CPEs, it uses one or more functions that specify the parameter(s) of the
remaining distributions. The most common function is linear function, and
it is the only one currently included, but others can be added. This is
necessary for dependencies on continuous phenomena.

Probability distributions are classified in the Probability Distribution
ontology shown in Figure 5. This ontology is a hierarchy of the most com-
monly used probability distributions. The main classification is between
discrete and continuous distributions. Discrete distributions may either be
defined by a formula (as in the Poisson and Binomial distributions) or ex-
plicitly for each value (state). Every continuous distribution can be altered
by changing its scale or by translating it (or both). The most commonly
used continuous distributions are the uniform and Gaussian (normal) distri-
butions. The uniform distribution is on the unit interval and the Gaussian
has mean 0 and variance 1. Other uniform and Gaussian distributions can
be obtained by scaling and translating the standard ones. Other commonly
used distributions are the exponential and chi-square distributions as well
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as the Student’s t (due to Gosset) and Fisher’s F.
Distribution
- Continuaus
Discrete
scale @ float
trahslate : float
£ ZF. ‘Cf‘ L‘x
i i ial Finit
Poisson Binomia nite Unifarm Gayssian Exponential Chitquare
density : float bias : float -
dof :int
trials : int
T Gosset Fisher
State dof o int ndof - int
name ; tring ddof : int
weight © float

Figure 5. Ontology for Probability Distributions

7. Conclusion

This paper has presented an extension of the Semantic Web that integrates
probabilistic inference with logical inference. In the process it opens possi-
bilities for automating processes such as reconciliation, consistency checking
and information fusion of scientific results from diverse sources. However,
many challenges remain before the BW can be fully realized. As a first step,
existing tools for BN analysis must be adapted to use the proposed BW on-
tology. A more fundamental problem is to specify the semantics of the BW.
While there is a formal semantics for the SW and BNs separately, there is
no formal semantics that combines the two. At the least, there should be
minimum logical requirements for BN information from two sources to be
fusable. If it has been determined that this information is fusable, then
there should be a formal mathematical definition of the fused result.
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