
Page 1 of 15

Towards a Symptom Ontology for
Semantic Web Applications

Kenneth Baclawski1, Christopher J. Matheus2, Mieczyslaw M. Kokar1,
 Jerzy Letkowski3 and Paul A. Kogut4

1 Northeastern University
2 Versatile Information Systems, Inc.

3 Western New England College
4 Lockheed Martin

Abstract. As the use of Semantic Web ontologies continues to expand there is a
growing need for tools that can validate ontological consistency and provide
guidance in the correction of detected defects and errors. A number of tools
already exist as evidenced by the ten systems participating in the W3C’s
evaluation of the OWL Test Cases. For the most part, these first generation
tools focus on experimental approaches to consistency checking, while minimal
attention is paid to how the results will be used or how the systems might
interoperate. For this reason very few of these systems produce results in a
machine-readable format (for example as OWL annotations) and there is no
shared notion across the tools of how to identify and describe what it is that
makes a specific ontology or annotation inconsistent. In this paper we propose
the development of a Symptom Ontology for the Semantic Web that would
serve as a common language for identifying and describing semantic errors and
warnings that may be indicative of inconsistencies in ontologies and
annotations; we refer to such errors and warnings as symptoms. We offer the
symptom ontology currently used by the ConsVISor consistency-checking tool,
as the starting point for a discussion on the desirable characteristics of such an
ontology. Included among these characteristics are 1) a hierarchy of common
symptoms, 2) clear associations between specific symptoms and the axioms of
the languages they violate and 3) a means for relating individual symptoms
back to the specific constructs in the input file(s) through which they were
implicated. We conclude with a number of suggestions for future directions of
this work including its extension to syntactic symptoms.

1 Introduction

As the Semantic Web initiative and the use of the Web Ontology Language (OWL)
[1] continue to develop and grow in popularity, there will be an increasing need for
ways to validate ontological consistency and provide guidance in the correction of
defects and errors in OWL documents. Even with relatively simple OWL documents,
identifying inconsistencies within their XML markup can be a major challenge
beyond the capabilities of most writers of ontologies and annotations. Fortunately,
formal and heuristic techniques exist for automatically detecting certain types of
inconsistencies, and several tools, called “validators” or “consistency checkers”,
already provide some limited capabilities. The W3C’s OWL Test Results page [2]
shows nine systems capable of detecting at least some forms of inconsistencies within
OWL documents; additional tools with consistency-checking capabilities can be
found in [3] and at [4]. As automated consistency-checking techniques continue to
mature they will eventually become an integral part of most if not all OWL tools and
application development suites. Given the formative stage of these tools, now is the
time to consider how they might evolve and explore ways of fostering their ultimate
effectiveness and interoperability with other tools.
 In this paper we focus on the nature of the output of consistency-checking tools,
both in terms of what they are like now and what they might be in the future. In

�G
������7TVMRKIV�:IVPEK�
LXXTW���PMRO�WTVMRKIV�GSQ�GLETXIV��������������������������C��

Page 2 of 15

particular we are concerned with the format and content of the output reports these
tools generate, which currently vary widely in the inconsistencies they identify, the
identification and description of the detected symptoms of the inconsistencies and the
format in which the results are delivered. We begin by reviewing the content and
format of the results returned by several existing tools and argue that the lack of a
consistent and well-grounded (semantically speaking) approach to the representation
of results makes these tools difficult to use, especially by automated programs
intended to leverage the results of one or more of them. The situation as it currently
exists seems to be begging for the development of a common, shared ontology for
describing the symptoms of the inconsistencies discovered in OWL documents. As an
example of how such an ontology might work, we present the symptom ontology used
by ConsVISor [5], the authors’ consistency-checking tool, and offer it as an initial
step towards the establishment of a symptom ontology for Semantic Web
applications. In closing we discuss the strengths and limitations of this nascent
ontology along with making a number of suggestions for future improvements and
extensions.

2 Review of Existing Consistency Reports

We have analyzed the output from several freely available consistency-checking tools
but for this paper we limit attention to the following five: ConsVISor [6], Euler [7],
FOWL [8], Pellet [9] and vOWLidator [10]. The first four of these systems
participated in the W3C OWL Test Cases demonstration [2] and either provided links
to their full output reports for each test or they were available as Web services from
which their results could be easily obtained. The fifth system was included due to its
early popularity as a DAML+OIL [11] (the predecessor to OWL) validation tool and
because it exhibits some desirable characteristics worth noting. For the sake of
comparing the various outputs, we used just one of the W3C’s DL inconsistency test
cases (DL 109) to produce the sample output reports that appear in Figures 1-5.

Fig. 1. ConsVISor Sample Output Report (condensed HTML version)

 In our analysis, we were not as concerned with the correctness of the results as we
were with the general nature of the content and format of the reports. On the chosen
test case all of the first four systems correctly identified the document as being
inconsistent; the fifth system was unable to perform a consistency test due to an error

Page 3 of 15

produced by the parser it happens to use. Of greater interest to us were the answers to
three simple questions. Number one, what language does the tool use to format its
output? In other words, is the output report written in plain text, structured HTML,
OWL/RDF or some non-standard language? The answer to this questions conveys a
lot about how easy it is to automatically process the results with other programs. It
also identifies whether there is a well-defined semantics for interpreting the results.
The second question was, did the tool identify specific symptoms of the
inconsistencies within the document? This question is not about whether the tool
correctly identified the presence of one or more inconsistencies (i.e., that it responded
“Inconsistent” or “Consistent”) but rather whether the specific nature of the
inconsistencies was identified; just knowing that a document is inconsistent is not as
helpful as knowing why. In the ideal case a tool would associate each symptom of an
inconsistency with the specific axiom or axioms of the ontology language (i.e., RDF,
OWL Lite, OWL DL, OWL Full) that were violated. And the third question was,
how useful to the document’s author is the output report in identifying and helping to
correct the cause(s) of the inconsistency(s)? Being told that a complex document
violates a specific OWL axiom will not necessarily provide sufficient information for
the author to locate and correct the error, even if she is a highly skilled ontologist.
Ideally a tool will, when possible, indicate the line number and character position of
the symptom(s) indicative of the underlying inconsistencies.

Fig. 2. Euler Sample Output Report (condensed)

 Table 1 provides a summary of the answers to the three questions for the five
analyzed systems. The intent of this table is not to pass judgment on particular
systems but to indicate the disparate nature of the output of current systems. In the
following sections we discuss each of our three questions and their answers in more
detail. We also spend time describing the differences between statements made by
some of the systems pertaining to errors, warnings, information and fatal failures,
some of which go beyond the mere identification of symptoms of inconsistencies.

Table 1. Summary of Answers to Three Questions

System Output Language Axiom Violations IDed Symptom Local
ConsVISor HTML or OWL yes yes, if possible
Euler non-standard difficult to determine no
FOWL non-standard difficult to determine no
Pellet text (html markup) no no

vOWLidator structured HTML sometimes no

Page 4 of 15

Fig. 3. FOWL Sample Output Report

2.1 Question 1: Output Language

The W3C OWL test results show that in the case of the set of all inconsistency tests
no single participating system is currently capable of detecting every inconsistency
across all language species (i.e., Full, DL, Lite). On the other hand, every
inconsistency test (ignoring one extra credit test) was identified as such by at least one
participating system. This result is not very surprising given that the tools employ
different techniques for detecting inconsistencies and many of them are still in the
early stages of development. This observation, however, does suggest that if we wish
to be thorough in the testing of our OWL documents we should run them through
more than one of these systems. It is possible to do this today in a manual fashion
with those tools that are being considered in this paper, but the process is very tedious
at best. Furthermore, the results that are returned by most of these systems are
intended for human consumption (and often humans well versed in logic and the
interpretation of proof structures); that is to say they are formatted in plain text (or
plain text prettified with HTML markup) rather in a language, such as OWL, intended
for machine processing and interpretation. It is fair to say that writing a program to
automatically run all five systems (or even some reasonable subset) on a given OWL
document and then combine the results into a meaningful summary would be
challenging. Even if one succeeded in creating such a program it would require
tweaking whenever any of the tool authors changed the output representation of their
systems or when new, more powerful systems come along, each having its own
unique output format.

Fig. 4. Pellet Sample Output Report

Page 5 of 15

 If the intent is to be able to have consistency-checking tools that can interoperate
with other tools or amongst themselves, then it is paramount that these systems at
least provide the option for outputting their results in an ontologically-based language
such as OWL/RDF. Once this conclusion is accepted it becomes necessary to
consider what should belong in the ontology created for this purpose. Before
addressing this issue, however, there are two additional factors we would like to
consider regarding the nature of the output of consistency-checking tool.

2.2 Question 2: Axiom Violation

The guidelines provided with the W3C OWL Test Cases specify that a consistency-
checking tool “takes a document as input and returns one word being Consistent,
Inconsistent, or Unknown” [12]. This approach is fine if all you wish to know is
whether an ontology is consistent or not. A Semantic Web browser, for example, may
only need this level of feedback from a consistency checker in order to determine
whether or not it should attempt to render a document; if the checker returns
Inconsistent the browser can simply refuse to process it further. If, on the other
hand, you are an author needing to produce a consistent document, having a tool that
simply tells you your document is Inconsistent is not very helpful; rather, you
would like to receive some indication of what it is about your document that makes it
inconsistent.

Fig. 5. vOWLidator Sample Output Report

 So what makes an OWL document inconsistent? An OWL document is
inconsistent if there is no interpretation for the RDF graph defined by the document’s
triples [13]. An interpretation exists if and only if there are no contradictions in the
set of triples consisting of the document triples plus all of the derived triples entailed
by the axioms of the OWL/RDF language. In theory, if a consistency checker
discovers a contradiction in this set of triples it should be possible to trace the
contradiction to a specific violation or violations of the OWL/RDF language
semantics specified in [13] and [14]. Ideally, a consistency-checking tool should
describe the detected symptoms of inconsistencies in terms of the specific language
axioms that are violated. By doing so it provides a means for verifying that the tool
“understands” what it is talking about. In other words, if a tool can state why it
believes there is an inconsistency we have a means for determining whether it is
correct. We currently have no systematic way of knowing if the reasoning behind the
Consistent and Inconsistent responses we get from the tools is sound. What

Page 6 of 15

we need is an agreed upon approach for how tools indicate the axiom violations they
detect – yet another reason for the creation of a common symptom ontology.

2.3 Question 3: Symptom Location

In addition to identifying the nature of a violation, an ideal consistency checker would
indicate the precise location and nature of the “bug” or “bugs” discovered in an OWL
document. For example, the tool might tell you that “in the Ontology element you
forgot to include an import for the XYZ ontology” or “you mistyped the name of the
resource at line 10 character position 5”. Unfortunately the precise identification of
the underlying cause or causes of an inconsistency, let alone its location, is often not
possible. This situation can result from limitations in the methods these tools use to
detect inconsistencies, but it can also be due to the fact that it is frequently impossible
to determine the original intentions of the author. In either case what these first
generation tools usually detect are “symptoms” of problems rather than the problems
themselves, and in many cases a single problem can lead to multiple symptoms. It can
be very confusing to receive tens of messages from a consistency checker about an
undefined resource and yet receive no mention of the construct causing the error
itself, such as a typo in the id of the element where the resource was supposedly
defined. This is a problem not yet addressed by any existing tool and so for the time
being we will need to be content with identifying and locating symptoms rather than
bugs.1
 Some of the tools do a fine job of identifying the nature of the symptoms but few
provide much insight into their locations. Again, this is not always possible, but when
it is it would be helpful to have this information included in the output report. The
question then becomes, where and how is it presented. If we had a common symptom
ontology it would be an easy matter to associate a “line” property and a “character-
position” property (having appropriate constraints) with the definition of the
“symptom” class. Not only would this be useful information to present to human
authors today, but in the future, as these tools are embedded in other tools, we can
imagine this information being used by a graphical ontology editor to guide the author
to the precise location of suspected errors.

2.4 Errors, Warnings, Information & Fatal Failures

All problems are not created equal. In the process of analyzing an OWL document a
consistency checking tool may encounter a variety of issues of various degrees of
severity. The most egregious are those that clearly violate one or more axioms of the
language semantics; these are clearly identifiable as errors. In addition to errors,
however, there are several types of identifiable “issues” that are not clear violations of
the OWL semantics but which none the less indicate that an unintended meaning may
be implicit in the document. Consequently, many tools provide informative
statements that describe, for example, activities such as importing additional
ontologies or the making of an assumption about the OWL language class being used
(e.g. Full, DL or Lite). Warnings represent the identification of constructs (or often,
lack there of) that indicate the author may have constructed something other than
what was intended, even though it is perfectly valid. For example, it is perfectly
permissible in OWL full to use a resource as a property without defining it as such,
but it is often the case that doing so represents an oversight in the definition of the
property or perhaps a misspelling of the resource name. Informative statements and
warnings are not actually indicators of inconsistencies but they are often helpful in

1 The authors are working on a second generation tool, called BugVISor, that attempts
to reason from observed symptoms back to the root problems, i.e., the “bugs”, that
caused them; unfortunately this topic is beyond the scope of the current paper.

Page 7 of 15

providing information that the author can use to ensure the ultimate document
conveys the intended meaning. There is finally another type of “issue” not quite
captured by any of the other three and that is what we call a fatal failure. A fatal
failure occurs when the system failed to complete the consistency check because it
either crashed, ran into a parsing error or ran out of resources. In such cases the tool
(if it can) should return “Unknown” as its result and ideally include as much
information as may be useful in determining the cause of the failure.
 As with the case of symptom location, there is the question of “where” and “how”
to report information about these various types of issues. Once again, having a
common ontology would provide the vehicle for representing such information in a
consistent and meaningful manner usable by humans and machines alike.

3 Proposed Solution

For the purpose of giving an account of the symptoms of inconsistencies detected in
an OWL document by a consistency-checking tool, various approaches are possible.
A natural approach, and one chosen by several existing tools, is the use of a plain
textual description describing the problem(s) in human readable terms. An obvious
extension to this is to beautify the output with HTML markup or to add some
structure to the results using, for example, HTML tables. While the latter approach
makes it possible to write programs to “screen scrape” the content of the results from
the HTML, none of these approaches is well suited to the automated processing and
interpretation of the results by machines. As discussed above, there are several
advantages to making consistency-checking results machine processible, and, given
the intended audience of this paper, we do not believe it is necessary to belabor the
argument. Given that the use of a formal language is desirable the question then
becomes one of choosing which one based on the requirements of the information that
needs to be conveyed. Clearly we will need to define at least a class to represent
instances of symptoms and this class will need properties to associate individual
symptoms with the specific resources involved, axioms violated, and location
information, at the least. These requirements represent a clear case for use of an
ontology language and in the context of the Semantic Web the natural choice is of
course OWL itself.
 If we agree it is worthwhile to develop a common ontology in OWL for use in
annotating the results of consistency-checking tools, we can then turn our attention to
the question of what it needs to contain. As we have argued, symptoms are about as
much as one can expect to receive from the current generation of tools, and even with
the advent of more sophisticated systems capable of identifying actual bugs there will
always be situations where the best one can do is cite the symptom(s) indicative of a
possible bug (this is so because there will always be situations where a system cannot
unequivocally determine the intent of the author). For this reason we believe the
symptom class should be the focus of the ontology, and have placed it at the center of
our proposed high-level design shown in Fig. 6. So what makes up a symptom?
First, a symptom is always attributable to a specific OWL document, i.e., the one in
which it was detected. In fact, since the output of the tool may actually include
multiple symptoms it would be convenient to define a high-level class to describe the
OWL document and associate with it the (possibly empty) set of symptoms that were
detected. This Ontology class could also contain meta-data about the document,
such as its OWL level (i.e., Full, DL or Lite), the high-level conclusion reached by the
tool (i.e., Consistent, Inconsistent or Unknown) and even whether is was found
at the specified location (we return to these ideas in Section 5).
 Another characteristic of a symptom is that there should always be (in theory at
least) an axiom of the language that was violated and which serves as the justification
for claiming the symptom represents an inconsistency. This can be represented using
a property on the symptom class that connects it with a class representing axioms. In

Page 8 of 15

addition, a symptom is always manifested by the characteristics of one or more RDF
statements (i.e., triples) found in or inferred from the OWL document. It is possible
to identify various types of symptom sub-classes based on the statement
characteristics they share; when we consider the ontology used by ConsVISor in the
next section we present an example of a set of symptom subclasses defined in this
manner. This idea of creating symptom subclasses based on shared characteristics is
appealing because we can then define the relationships between the statements
comprising a subclass of symptoms through the definition of appropriate property
constraints on the subclass. The examples in the next section will make this more
clear, but for now the point is that the ontology needs to be able to associate
symptoms with specific statements specified in or inferred from the OWL document,
and one convenient way to do this is by defining various symptom subclasses based
on shared statement characteristics.

Fig. 6. Proposed High-Level Design for a Shared Symptom Ontology

 The UML diagram in Fig. 6 shows a high-level view of the proposed design for a
common symptom ontology, as described in the preceding paragraphs. This design is
intended to capture the general concepts that we hope can be agreed upon by the
Semantic Web user community and thereby serve as a starting point for discussion;
consequently, many of the details of a complete solution – including what fully
defines the Axiom and Document classes – are left unspecified. In the next section
we describe the design decisions made during the creation of ConsVISor’s symptom
ontology and offer the implementation as a case study from which to draw ideas for a
community-defined solution.

4 ConsVISor’s Symptom Ontology

ConsVISor is a rule-based tool for checking the consistency of OWL Full, OWL DL
and OWL Lite documents. At the time of this writing it is freely available for use as a
Web service at http://www.vistology.com/ConsVISor. ConsVISor’s development
was initiated as a DARPA funded project in 2002, at which time the target languages
were DAML+OIL and RDF and the implementation was done in Prolog and Java.
During the conversion from DAML+OIL to OWL in 2003 the system underwent a
number of changes including a re-implementation in Jess and Java and the
introduction of a symptom ontology for use in producing OWL-annotated results. The
success of this ontology-based approach to generating consistency reports led to the
conceptualization of this paper. In the rest of this section we describe the design of

Page 9 of 15

the ConsVISor symptom ontology and offer it as an initial step towards the ultimate
realization of a common symptom ontology for Semantic Web applications.
 As stated earlier, a symptom is an indication of a possible problem in an ontology.
As with human disease symptoms, such an indication can be benign or it can be
severe. The actual diagnosis is not addressed by this ontology. It is only concerned
with those conditions that may be of some use in a determination that the ontology
has a problem that should be addressed.

Fig. 7. ConsVISor’s Symptom Ontology (simplified for display purposes)

 As discussed in the previous section, a particular symptom individual is always
characteristic of some particular ontology. Since symptoms are properties of an
ontology, they must somehow be linked with the ontology being checked. However,
it would be inappropriate to link the symptom directly with the ontology being
checked because the symptom is not an intrinsic property of the ontology. It is only a
property of the particular invocation of the consistency checker on that ontology. If
one regards the symptoms as being in a report generated by a tool, then the symptoms
should properly reside in that report, and the report (along with many others) can refer
to the ontology being checked. Since such a report consists of OWL statements, it is
itself an OWL ontology. The instances of the Ontology class in Fig. 7 are these
reports, and symptoms in this report are explicitly linked with the report to which they
belong by the symptom ontology property. By defining the collection of symptoms
generated by a consistency checker to be an OWL ontology, it can itself be checked
for consistency, as well as processed by any OWL-aware tool. Consistency checking
reports have a number of other ontology properties that are used to specify the context
within which the consistency checker produced them, such as:

• The consistency checking tool that produced the collection of symptoms is
specified by the checked ontology property.

• There are three language levels for OWL ontologies. This level is not
intrinsic to the ontology, and a single ontology can be regarded as belonging
to any one of the three. The owlLevel ontology property specifies the level
that was used for the consistency checking operation.

Page 10 of 15

• The consistency ontology property gives the result of the consistency
checking task. There are three possible values:

1. Consistent
2. Inconsistent
3. Unknown

• If the consistency checking tool was unable to download the ontology, then
the found ontology property is false, otherwise it is true. This ontology
property was introduced to distinguish the case of an ontology that does not
exist (usually because its URI was not given correctly) from an ontology that
is so complex that the consistency checker cannot make a definitive
determination of consistency in a reasonable amount of time. At first a
separate symptom class was used for indicating whether an ontology could
be downloaded, but such a characteristic is not a feature of the ontology but
rather of the mechanism used to download it. For the same reason, it was felt
that this ontology property should not be combined with the consistency
ontology property.

• The processingError ontology property is used when the consistency
checker fails in its processing either because some internal error (bug)
occurred or there were insufficient resources available for the task. Unlike
the found ontology property, which is usually due to an error by the client, a
processing error is entirely the fault of the consistency checker.

 The most important part of the Symptom Ontology is its hierarchy of symptom
classes. All of these classes are subclasses of Symptom, and they share the following
properties:

• The description of a symptom is an explanation, using ordinary natural
language, of the symptom that occurred.

• There are four severity levels for symptoms:
1. Symptoms having no effect on consistency are at the info level. These

symptoms are simply reporting on entailments that might possibly be
indicators of a problem. For example, a resource that was used as the
predicate of a statement but was not declared to be a property would
generate such a symptom. It is considered to be only informational
because the fact that the resource is a property is entailed by its use as a
predicate. However, not all entailments result in symptoms.
Subsumptions, for example, are too common and routine to merit
explicit mention. Currently there is no clear boundary between those
entailments that should produce a symptom and those that should not.

2. A warning is a symptom that is not just the result of an entailment, but
that also is not a clear indicator of an inconsistency. Ideally, there
should not be any of these as they represent a situation in which the
consistency checking tool has been unable to decide between
consistency and inconsistency. However, every tool has its limitations
because consistency checking is computationally very hard in the worst
case (and even undecidable for OWL Full).

3. An error symptom is a clear indication of an inconsistency. Such a
symptom is definitely a problem.

4. A fatal error means that processing of the ontology did not complete
normally.

• The OWL language reference does not have a single listing of all of the
axioms of the language. The specification of the three language levels is
stated in several ways, some of which do not specify the axioms of all the
language constructs. To deal with this complexity, each symptom specifies
one or more references to items in the OWL language reference documents
that are responsible for the symptom. Each symptom is linked with at most

Page 11 of 15

one member of the Axiom class via the axiomViolated property. Each
such axiom, in turn, is linked to specific places in the OWL language
reference documents via the reference property. This allows a client to
examine the original sources that define the OWL language. Unfortunately,
these sources are not formally specified, so these links are only meaningful
to a person.

Fig. 8. Property Associations for each Symptom Class

The subclasses of Symptom differ from one another with respect to the properties that
apply; these differences are depicted in Fig. 8. All of these other properties are alike
in linking a symptom to one or more reified statements. These reified statements
indicate the statements that were responsible for the symptom. There are several
reasons for using reified statements.

• Reified statements are not asserted so they do not represent statements in the
consistency checker report. One would certainly expect that the report
generated by a consistency checker should itself be consistent so that it can
be processed by the same tools that process any other ontology or annotation.
If the statements were asserted they would, in general, reproduce the same
inconsistencies in the report that exist in the ontology being checked.

• Reified statements are resources, so one can make statements about them.
The statements in this case are explanations of the reasons for a symptom
being generated.

• One could certainly have explained each symptom by referring to various
resources. This was the case in an early version of the Symptom Ontology.
However, this design was complex because it required one to introduce a
number of auxiliary classes to express all of the concepts. We found that by
using reified statements one could eliminate the auxiliary classes. For a
while the design used both reified statements and direct references to literals
and resources. Eventually the design evolved until all such direct references
were eliminated and all explanations were specified using reified statements.
The resulting design achieved significant simplifications.

Page 12 of 15

Another design alternative that was considered for some time was for the symptom
explanations to be proofs. Some of the symptom classes have sufficient information
(including references to axioms in the OWL languages reference documents) to
construct a proof. However, we chose not to give complete proof traces because it
would make processing of the resulting report much more difficult (both by humans
and by software agents). In addition, it would make comparing the reports of different
consistency checkers much more difficult if not impossible (even if one could agree
on how to compare proofs).

4.2 The Symptom Classes

In this section we define the fifteen symptom classes and identify their properties.
The association between the symptom classes and properties are visually depicted in
Fig. 8.

AmbiguousComponent. An inverse functional property maps two resources to the
same resource. If the two resources are different, then this symptom signals an
inconsistency. Properties: The conflict property gives the conflicting facts, and
the asserted property gives the inverse functionality constraint assertion.

CardinalityConstraint. A cardinality constraint was not satisfied. This includes max,
min and equal cardinality constraints. Properties: The cardinality constraint that was
asserted is given by the constraint property. The property that is being constrained
is given by property. The resource that is mapped to the wrong number of other
resources is given by the instance property. The numerical relation (equality or
inequality) that failed to hold is given by the unsatisfied property. Cardinality
constraints are usually specified by asserting a subclass constraint between a class and
a relation. This fact is given by the restriction property.

ConflictingFacts. Two facts conflict with one another. In other words, they cannot
both hold and still be consistent. This is the superclass of several other symptom
classes that specify more specific kinds of conflict. Properties: The conflict
property gives the conflicting facts. When there is an explicitly asserted statement that
acts as a constraint (such as a functionality constraint on a property) then the assertion
is given by the asserted property. The difference between the asserted fact and the
conflicting facts is that the two conflicting facts are at the same "level" and are similar
(such as two resources mapped to the same resource), while the asserted fact is on a
different "level" (such as a functionality constraint). If the constraint is built-in then
the asserted property will not have a value.

DisjointnessFailure. Two disjoint classes have an instance in common. Properties:
The conflict property gives the conflicting facts. When an explicit assertion of
disjointness was made, then the asserted property gives this statement. Built-in
disjointness constraints will not have a value for the asserted property.

FunctionalityFailure. A functional property maps a resource to two resources. If the
two resources are different, then this symptom signals an inconsistency. Properties:
the conflict property gives the conflicting facts, and the asserted property gives
the functionality constraint assertion.

IllegalStatement. A statement was asserted that is not allowed at the specified
language level. Properties: The asserted property gives the asserted illegal
statement. Sometimes there will also be an element item. This occurs when a list of
a particular kind (given by the asserted property) contains an illegal element.

Page 13 of 15

IncompleteUnion. A union or enumeration class has an instance that does not occur
in the component classes (for a union) or is not one of the enumerators. Properties:
When there is an explicitly stated union or enumeration constraint, then it is given by
the constraint property. Built-in constraints are not given. The instance of the
union or enumeration is given by the instance property. For a union class, the
instance should be an instance of one (or more) component classes. These facts may
be given using the unasserted property. Similarly for enumeration classes.

LiteralConstraint. A literal was asserted to have a datatype with which its value is
incompatible. Properties: The asserted property gives the statement that the literal
has the datatype.

MissingComponent. A required resource is missing. For example, rdf:first must
always have exactly one value. This is a special case of a minimum cardinality
constraint, but this symptom class is not a subclass of CardinalityConstraint.
Properties: The asserted property gives the statement that uses the resource in
question. The unasserted property gives the statement that should have been
asserted. The object of this statement does not exist, so shown as
sym:unspecifiedEntity. However, this is just a placeholder. If two symptoms of
this kind occur, the unspecified entities need not be the same.

MissingDeclaration. A resource was used in a manner that requires that it be an
instance of particular class, but the resource was never explicitly declared to be such
an instance. These symptoms are informational only, since the unasserted
statement is immediately entailed. However, these symptoms are some of the most
useful for catching errors. Spelling errors, for example, will result in a
MissingDeclaration symptom. Properties: The asserted property gives the
statement that uses the resource in question. The undeclared property gives the
statement that should have been asserted.

MissingDeclaredValue. This is a combination of MissingComponent and
MissingDeclaration. The value is not only missing, it also must be declared to be
an instance of a particular class. This symptom arises from an
owl:someValuesFrom constraint. This symptom is informational only because the
necessary statements are entailed. Properties: The owl:someValuesFrom
constraint is specified using property, restriction and constraint as in the
CardinalityConstraint symptom. The instance is given by the instance
property. The missing value is given by unasserted as in MissingComponent, and
the missing declaration is given by undeclared.

MissingItemDeclaration. An item in a collection is required to be an instance of a
particular class, but it was not declared to be in this class. This is an informational
symptom only because the declarations are entailed. Properties: The asserted
property gives the collection-valued statement that constrains the elements of the
collection. The particular item that was not declared is given by the item property.
The declaration that was not asserted is given by the undeclared property.

MissingValue. A particular case of an owl:hasValue constraint was not satisfied.
This is informational only as the statement is entailed. Properties: The
owl:hasValue constraint is specified using property, restriction and constraint as in
the CardinalityConstraint symptom. The instance is given by the instance
property. The missing fact is given by unasserted property.

MissingValueDeclaration: A particular case of an owl:allValuesFrom constraint
was not satisfied. This is informational only as the declaration is entailed.

Page 14 of 15

Properties: The owl:allValuesFrom constraint is specified using property,
restriction and constraint as in the CardinalityConstraint symptom. The
instance is given by the instance property. The statement mapping the instance by
the property to an undeclared value is given by the asserted property. The missing
declaration is given by undeclared property.

TargetConstraint: Any of several constraints such as domain and range constraints
that have exactly one asserted and exactly one unasserted statement. These are usually
informational symptoms, but in some cases the symptom is an error when asserting
the unasserted statement is not allowed. Properties: The constraint (such as a
domain constraint) is given by the constraint property. The statement (such as a
mapping of a resource that does not satisfy the constraint) that gave rise to the
constraint failure is given by the asserted property. The statement that should have
been asserted is given by the unasserted property.

5 Possible Extensions and Enhancements

If a Symptom Ontology for OWL is accepted, then it could be the beginning of a
trend toward formalizing the output of many other tools. OWL is most commonly
represented using RDF and XML Schema, so that the first step in consistency
checking is parsing RDF and XML Schema files (which, in turn, requires parsing
XML documents). Both RDF and XML Schema have complex semantics that require
their own forms of consistency checking. In fact, RDF has a suite of test cases that is
as extensive as the OWL test case suite. [15] The same kind of Symptom Ontology
can be developed for RDF as we have done for OWL. Although most of the
symptoms would be syntactic, RDF has nontrivial semantics, which, as in the case of
OWL ontologies, should be checked for consistency. Both RDF and OWL use XML
Schema for the representation of literals, and one can also develop a Symptom
ontology for validating XML Schema data types and literals.
 More generally, one could formalize the output of compilers for languages other
than OWL, RDF and XML Schema. This would allow one to automate the validation
of compilers. It would also make it possible to build tools (such as integrated
development environments) that process and present the output of whichever
compiler one chooses to use.
 While developing the Symptom Ontology, we found that there were many axioms
that were not expressible in OWL. For example, a TargetConstraint symptom
has three associated reified statements. In the case of a domain constraint, the
subjects of two of the reified statements (the asserted and the unasserted reified
statements) should be the same. One cannot express such a constraint in an OWL
ontology. However, it is possible to do so using rules. When an OWL rule language
is available, it will be possible to give a more complete theory of symptoms.

6 Conclusion

In their Scientific American article, Tim Berners-Lee, James Hendler and Ora Lassila
envisioned the Semantic Web to be "an extension of the current web in which
information is given well-defined meaning, better enabling computers and people to
work in cooperation” [16]. The success of the Semantic Web depends on tools to
ensure that meaning is really "well-defined", i.e., that information is consistent and
reflects the intentions of the authors. Many first generation tools have now
established that consistency checking of Semantic Web ontologies is feasible.
However, for the most part these tools have not themselves adhered to the Semantic
Web vision of well-defined meaning and interoperability. Few of them produce

Page 15 of 15

results that can be processed by machine, and there is no shared notion of how to
describe the flaws that they detect in Semantic Web ontologies and annotations.
 To remedy this situation, we have proposed a common language for identifying
and describing semantic errors and warnings that may be indicative of inconsistencies
in ontologies and annotations. This language is expressed as an OWL ontology called
the Symptom Ontology. This language is currently used by our ConsVISor
consistency checking tool. Some of the characteristics that we have proposed as
being important for such an ontology include those that should be supported by any
tool (such as a compiler or interpreter) that requires semantic consistency; namely, a
hierarchy of common symptoms and a means of relating the symptoms to the
constructs in the source document that gave rise to them. We have also proposed that
symptoms should be associated with the axioms of the language that are violated.
The latter proposal goes beyond what compilers and other consistency checkers
currently do but is essential for achieving the goal of the Semantic Web in which all
information is well-defined.
 We see the Symptom Ontology as an example of how many tools that currently
produce informal, idiosyncratic output can be Semantic Web enabled. Virtually every
software tool generates errors and warnings when anomalous situations arise. By
formalizing these errors and warnings, their meanings will be formally defined and
grounded in the standard for the language, thereby contributing to the Semantic Web
vision of meaning and interoperability.

References

1 W3C Recommendation, OWL Web Ontology Language Overview, February

2004. http://www.w3.org/TR/owl-features/
2 W3C, OWL Test Results Page, March 2004. http://www.w3.org/2003/08/owl-

systems/test-results-out
3 European OntoWeb Consortium, A Survey of Ontology Tools, May 2002.

http://ontoweb.aifb.uni-karlsruhe.de/About/Deliverables/D13_v1-0.zip
4 InfoEther & BBN Technologies, SemWebCentral Validation Tools Assessment.

http://semwebcentral.org/assessment/report?type=category&category=Validation
5 K. Baclawski, M. Kokar, R. Waldinger and P. Kogut, Consistency Checking of

Semantic Web Ontologies. 1st International Semantic Web Conference (ISWC)},
Lecture Notes in Computer Science, LNCS 2342, Springer, pp. 454--459, 2002.

6 Versatile Information Systems, Inc., ConsVISor.
http://www.vistology.com/consvisor/

7 AGFA, Euler. http://www.agfa.com/w3c/euler/
8 UMBC, FOWL. http://fowl.sourceforge.net
9 University of Maryland Institute for Advanced Computer Studies, Pellet.

http://www.mindswap.org/2003/pellet/
10 BBN, vOWLidator. http://owl.bbn.com/validator/
11 DAML, DARPA Agent Markup Language. http://www.daml.org/
12 W3C, OWL Test Cases, February 2004. http://www.w3.org/TR/owl-test/
13 W3C Recommendation, OWL Web Ontology Language Semantics and Abstract

Syntax, February 2004. http://www.w3.org/TR/owl-semantics/
14 W3C Recommendation, RDF Semantics, February 2004.

http://www.w3.org/TR/rdf-mt/
15 W3C Recommendation, RDF Test Cases, February 2004.

http://www.w3.org/TR/rdf-testcases/
16 T. Berners-Lee, J. Hendler and O. Lassila, The Semantic Web: A new form of

Web content that is meaningful to computers will unleash a revolution of new
possibilities. Scientific American, May 2001.

