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Abstract

Bayesian networks are a popular mechanism for dealing with uncertainty in com-
plex situations. They are a fundamental probabilistic representation mechanism
that subsumes a great variety of other stochastic modeling methods, such as hidden
Markov models, stochastic dynamic systems. Bayesian networks, in principle, make it
possible to build large, complex stochastic models from standard components. Devel-
opment methodologies for Bayesian networks have been introduced based on software
engineering methodologies. However, this is complicated by the significant differences
between the crisp, logical foundations of modern software and the fuzzy, empirical
nature of stochastic modeling. Conversely, software engineering would benefit from
better integration with Bayesian networks, so that uncertainty and stochastic infer-
ence can be introduced in a more systematic and formal manner than it is now. In
this paper, Bayesian networks and stochastic inference are briefly introduced, and
the development of Bayesian networks is compared with the development of object-
oriented software. The challenges involved in Bayesian network development are then
discussed.

Keywords: Bayesian networks, Bayesian network development, software
development methodologies

1 Introduction

Stochastic modeling has a long history, and it is the basis for the empirical methodology
that has been used with great success by modern scientific disciplines. Stochastic models
have traditionally been expressed using mathematical notation that was developed long
before computers and graphical user interfaces became commonly available. A Bayesian
network (BN) [39] is a graphical mechanism for specifying the joint probability distribution
of a set of random variables. As such BNs are a fundamental probabilistic representation



mechanism for stochastic models. The use of graphs provides an intuitive and visually
appealing interface whereby humans can express complex stochastic models. This graphical
structure has other consequences. It is the basis for an interchange format for stochastic
models, and it can be used in the design of efficient algorithms for data mining, learning
and inference.

The range of potential applicability of BNs is large, and their popularity has been
growing rapidly. They have even been applied to software development as a means of
improving software reliability [38, 49, 6, 5]. BNs have been especially popular in biomedical
applications where they have been used for diagnosing diseases [25] and studying complex
cellular networks [11], among many other applications.

It is easy to be lured into a false sense of security by ad hoc development techniques
that work well with small BNs. Recent work, such as my own work on situation awareness,
must process BNs with tens of thousands of random variables. Systematic development
techniques, including good support for modularity and reuse, are essential for developing
and processing stochastic models having this size and complexity.

The need for more systematic BN development methodologies has been advocated at
least since the year 2000 [29, 37], and a number of efforts have been started to address
this issue. Many techniques have been employed in these efforts, including ontologies and
object-oriented design techniques. I will attempt to survey the most interesting approaches
as well as try to assess their strengths and weaknesses. I will also attempt to show some
connections between BN development and software development that might be of benefit.

Some of the major philosophical works (specifically, Spinoza’s Ethics [45], Leibniz’s
Monadology [31], and Wittgenstein’s Tractatus [51]) propound some version of logical atom-
ism. In other words, they conceptualize the world using objects and their attributes, and
they propose relationships identified by words that link the the mental concepts of objects
and attributes to the corresponding physical objects. They also specify how more complex
objects can be constructed from more elementary objects. This is a point of view fits
neatly with how modern programming languages are designed to be used. See [23, 24] for
more about these ideas.

However, this point of view gives objects and attributes, and our knowledge about them,
an undeserved marmorial facticity. It ignores issues such as observational uncertainty,
belief, judgment and trust, all of which affect our perception of the world. While probability
theory is not the only mechanism for incorporating such effects, it is the only one that
can claim to be grounded both empirically (via frequentist statistics) and subjectively
(via Bayesian statistics). Accordingly, there are good reasons, both philosophical and
pragmatic, to attempt to incorporate probabilistic mechanisms in software methodologies.

This paper begins with some background material on BNs and stochastic inference.
Because BNs require one to specify probability distributions as part of the structure,
statistical methods will be needed as part of the task of constructing a BN. Section 3 gives
an overview of the statistical techniques needed for constructing and evaluating BNs. This
section also discusses how to represent the BN that has been constructed. In Section 4, BN
development is examined from the point of view of software development. Some interesting



BN development methodologies are now emerging, and these are discussed and compared
with analogous software development techniques. Most BNs are currently being developed
without any systematic process at all. Since BNs up to now are usually relatively small,
such processes are adequate at the moment. However much larger and more complex BNs
are now being developed, and the more systematic development processes will be necessary.
The paper gives some concluding remarks in Section 5 which also summarizes the main
open problems and challenges in BN development.

2 Bayesian Networks and Inference

In this section we review probability theory, random variables and the concept of a Bayesian
network. While most readers will already know this subject, it might be helpful to review
it. We then use a medical diagnosis example to introduce stochastic inference and Bayesian
decision theory. We then discuss how BNs can be used for modeling stochastic dynamic
systems. BNs can be dynamic in several ways. One can model processes that change over
time or one could consider BNs that change their structure dynamically. We end with
some miscellaneous topics in a section somewhat whimsically titled “Exercises”.

2.1 Probability Theory

The basis for Bayesian networks is probability theory. This theory assigns a number
between 0 and 1 (inclusive) to events. Events can be combined to form new events using
Boolean operations, and the probability assigned to these events must satisfy axioms to
ensure that the probability forms a measure. In addition, there is a universal event that
contains all others and that has probability 1. This universal event goes by various names,
such as probability space or sample space.

Probabilities are a measure of uncertainty. There are many sources for uncertainty.
Measurements are intrinsically uncertain. This is apparent with macroscopic sensors for
which accuracy of the measurement seems to be mainly a question of how much effort one
wishes to expend on the measurement. However, even at the level of subatomic particles,
there are limits to what one can measure, according to the Heisenberg uncertainty principle.

A more common source of uncertainty is the fact that a stochastic model will not include
all possible variables that can affect system behavior. There is effectively no limit on how
elaborate a model can be. However, models that have too many variables become unwieldy
and computationally intractable. The model designer must make choices concerning which
variables will be the most relevant and useful. The remaining variables are then ignored.
The cost of ignorance is nondeterminism and what appear to be measurement errors, but
what are in fact the result of unmodeled variables.

Yet another source of uncertainty is subjectivity. Probabilities are sometimes used as
a means of expressing subjective assessments such as judgment, belief, trust, etc. Some
researchers and philosophers take the extreme position that all probabilities are subjec-



tive. While there is considerable speculation about exactly what probabilities represent,
probability spaces are, however, just a means to an end; namely, the formalization of the
notion of stochastic model which we now develop.

A discrete random variable is a set of disjoint events such that each event is assigned
to a value of the domain of the random variable, and such that the union of all these
events is the universal event. For example, the states of a traffic light L are {green, yellow,
red, failed}. The events are (L = green), (L = yellow), (L = red), (L = failed). The
probabilities are Pr(L = green), and so on. These probabilities define the probability
distribution of the random variable.

A continuous random variable is somewhat more difficult to define because the proba-
bility of such a variable taking any particular value can be zero, yet the probability of it
taking values in an interval can be nonzero. A real-valued random variable is defined by
a nested sequence of events parametrized by the real numbers, such that the intersection
is empty and the union is universal. For example a temperature measurement 7' can be a
random variable. The events defined by T are of the form (7' < t), for ¢ a real number.
The probabilities of this event sequence forms an increasing function called the probabil-
ity distribution function of the random variable. The probability distribution function of
the temperature measurement 7' is f(t) = Pr(T < t). The derivative of the distribution
function at a given real number (if it exists) is called the probability density.

When there are several random variables, their probabilistic structure is completely
defined by the intersections of their events. Thus the events defined by the random variables
L and T include such events as (L = green) N (T < 5), (L = yellow) N (T < 7), etc. The
probabilities of these events define the joint probability distribution (JPD) of the random
variables L and T'. A stochastic model is another name for a collection of random variables.
The random variables may be discrete or continuous. The probabilistic structure of the
stochastic model is the JPD of the collection of random variables. One could give a strong
argument that stochastic models are the fundamental construct, and that the probability
space is secondary. That there might be events not expressible in terms of random variables
of the stochastic model is irrelevant to the model. However, it is convenient to treat
the probability space as fundamental and the random variables as derived from it (as
measurable functions on the probability space).

Given two events A and B, a conditional probability of A given B is any number ¢
between 0 and 1 (inclusive) such that Pr(A N B) = c¢Pr(B). When Pr(B) is nonzero,
the conditional probability of A given B is the ratio Pr(A N B)/Pr(B). However, when
Pr(B) = 0, every number between 0 and 1 is a conditional probability of A given B. The
notation for a conditional probability is Pr(A | B). The fact that conditional probabilities
are sometimes indeterminate is not a problem for how they are used in a BN. The event B is
the “condition” or “input”, while the event A is the “consequence” or “output”. However,
this terminology does not mean that B and A have a cause and effect relationship.

The formulation of probability theory given in this section is the classical approach.
One could introduce probability theory by using random variables as the fundamental
concept without any mention of events at all. This is necessary for quantum mechanics,



and may eventually be incorporated into BNs, but it has not yet happened.

2.2 Bayesian Networks

A Bayesian network (BN) is a graphical formalism for specifying a stochastic model. The
random variables of the stochastic model are represented as nodes of a graph. We will
use the terms “node” and “random variable” interchangeably. The edges denote depen-
dencies between the random variables. This is done by specifying a conditional probability
distribution (CPD) for each node as follows:

1. If the node has no incoming edges, then the CPD is just the probability distribution
of the node.

2. If the node has incoming edges, then the CPD specifies a conditional probability of
each value of the node given each combination of values of the nodes at the other ends
of the incoming edges. The nodes at the other ends of the incoming edges called the
parent nodes. A CPD is a function from all the possible values of the parent nodes
to probability distributions on the node. Such a function has been called a stochastic
function in [28].

It is also required that the edges of a BN never form a directed cycle: a BN is acyclic.
If two nodes are not linked by an edge, then they are independent. One can view this
independence property as defined by (or a consequence of) the following property of a BN:
The JPD of the nodes of a BN is the product of the CPDs of the nodes of the BN. This
property is also known as the chain rule of probability. This is the reason why the BN
was assumed to be acyclic: the chain rule of probability cannot be applied when there is a
cycle. When the BN is acyclic, on the other hand, one can order the CPDs in such a way
that the definitions of conditional probability and statistical independence can be applied
to get a series of cancellations, such that only the JPD remains.

Perceives Fever
Fl - TRUE FALSE
u Perceives Flu=F&cCold=F 001 089
Flu=F&cCold=T 0.1 0.8
Flu=T&cCold=F 0.9 0.1
PI’(FlLl)=0 0001 Fever Flu=T&Cold=T 0.95 005
Temperature
H(COld)= 0 01 - RITESEE
Mean Std Dev
Flu=F&Cold=F 37 0.5
Flu=F&Cold=T 375 1
Cold Flu=T&Cold=F 39 2

Flu=T&Cold=T 39.5 25

Figure 1: Example of a BN for medical diagnosis. Rectangles represent discrete random
variables and ovals represent continuous random variables.



Some of the earliest work on BNs, and one of the motivations for the notion, was to add
probabilities to expert systems used for medical diagnosis. The Quick Medical Reference
Decision Theoretic (QMR-DT) project [25] is building a very large (448 nodes and 908
edges) BN.

Consider, for example, the BN shown in Figure 1. The BN is a very small diagnostic
BN which specifies a stochastic model with four random variables:

1. Flu, meaning that a patient has influenza.
2. Cold, meaning that a patient has one of a number of milder respiratory infections.
3. Perceives Fever, meaning that the patient perceives that he/she has a fever.

4. Temperature, the continuous random variable representing a measurement of the
patient’s body temperature.

Note that three of the random variables are Boolean, the simplest kind of discrete random
variable, and that the fourth random variable is continuous. Two of the nodes have no
incoming edges, so their CPDs are just PDs, and because the nodes are Boolean, they
can be specified with just one probability. We assume that Pr(Flu) = 0.0001 and that
Pr(Cold) = 0.01, reflecting the fact that influenza is far less common than the common
cold.

The CPD for the Perceives Fever (PF) node has two incoming edges, so its CPD is a
table that gives a conditional probability for every combination of inputs and outputs. For
example, this CPD might be the following:

Table 1
not(PF) | PF
not(Flu) and not(Cold) | 0.99 0.01
not(Flu) and (Cold) 0.90 0.10
(Flu) and not(Cold) 0.10 0.90
(Flu) and (Cold) 0.05 0.95

The CPD for the Temperature (T) node has two incoming edges, so its CPD will have
4 entries as in the case above, but because T is continuous, it must be specified using some
technique other than a table. For example, one could model it as a normal distribution
for each of the 4 cases as follows:

Table 2

Mean | Std Dev
not(Flu) and not(Cold) | 37.0 0.5
not(Flu) and (Cold) 37.5 1.0
(Flu) and not(Cold) 39.0 1.5
(Flu) and (Cold) 39.2 1.6




As an example of one term of the JPD, consider the probability of the event (Flu) N
not (Cold) N (PF)N (T < 39.0). This will be the product:

Pr(Flu)(1 — Pr(Cold))Pr(PF | Flu and not Cold)Pr(T < 39.0 | Flu and not Cold)

which is the product (0.0001)(.99)(.90)(0.5) = 0.004455.

Although the BN example above has no directed cycles, it does have undirected cycles.
It is much harder to process BNs that have undirected cycles than those that do not. Some
BN tools do not allow undirected cycles because of this.

Many of the classical stochastic models are special cases of this general graphical model
formalism. Although this formalism goes by the name of Bayesian network, it is a general
framework for specifying JPDs, and it need not involve any applications of Bayes’ law.
Bayes’ law becomes important only when one performs inference in a BN, as discussed
below. Examples of the classical models subsumed by Bayesian networks include mixture
models, factor analysis, hidden Markov models, Kalman filters and Ising models to name
a few.

BNs have a number of other names. One of these, belief networks, happens to have
the same acronym. BNs are also called probabilistic networks, directed graphical models,
causal networks and “generative” models. The last two of these names arise from the fact
that the edges can be interpreted as specifying how causes generate effects. One of the
motivations for introducing BNs was to give a solid mathematical foundation for the notion
of causality. In particular, the concern was to distinguish causality from correlation. A
number of books have appeared that deal with these issues such as one by Pearl [40] who
originated the notion of BNs. For causation in biology see [43]. Other books that deal
with this subject are [13, 46].

2.3 Stochastic Inference

Having defined the notion of a BN, a number of issues immediately arise:
1. How does one construct a BN?
2. Having constructed a BN, what does one do with it?

The first question will be the subject of Section 4. We now consider the second question.
Having found a BN, one can perform inference with it. A BN, in fact, acts something like
a rule engine. In a rule engine, one specifies a collection of if-then rules, called the rule
base. One can then input a collection of known facts (typically obtained by some kind of
measurement or observation). The rule engine then explicitly (as in a forward chaining
rule engine) or implicitly (as in a backward chaining rule engine) infers other facts using
the rules. The set of specified and inferred facts form the knowledge base. One can then
query the knowledge base concerning whether a particular fact or set of facts has been
inferred.



As in a rule engine, one can specify known facts to a BN (via measurement or observa-
tion), and then query the BN to determine inferred facts. Specifying known facts is done
by giving the values of some of the random variables. The values can be given as actual
crisp values or as probability distribution on the values. These nodes that have been given
values are termed the evidence. One can then choose one or more of the other nodes as the
query nodes. The answer to the query is the JPD of the query nodes given the evidence.

Consider first the case of inference with no evidence at all. In this case, the probability
distribution of the query nodes is computed by summing the terms of the JPD over all
of the random variables that are not in the query set. For continuous random variables,
one must integrate over the probability density. Consider the diagnostic BN in Figure 1.
Suppose we would like to know the probability that a patient reports a fever. Integrating
over the temperature node produces this JPD (rounding all results to 4 decimal places):

Table 3

Event A Pr(PF and A) Pr(not(PF) and A)
not(Flu) and not(Cold) | (0.9999)(0.99)(0.01) = 0.0099 | (0.9999Y(0.99)(0.99) = 0.9300
not(Flu) and (Cold) 0.9999)(0.01)(0.10) = 0.0010 | (0.9999)(0.01)(0.90) = 0.0090
(Flu) and not(Cold) 0.0001)(0.99)(0.90) = 0.0001 | (0.0001)(0.99)(0.10) = 0.0000
(Flu) and (Cold) 0.0001)(0.01)(0.95) = 0.0000 | (0.0001)(0.01)(0.05) = 0.0000

— ]|~

Next, by summing the columns, one obtains the distribution of the PF node (except for
some roundoff error): Pr(PF) = 0.011, Pr(not(PF)) = 0.989 The process of summing
over random variables is called marginalization, or computing the marginal.

Flu

f

Query
(Inferred RV)

Perceives Evidence

/
jo— (Observed RV)

Figure 2: Example of diagnostic inference using a BN. The evidence for diagnosis is the
perception of a fever by the patient. The question to be answered is whether the patient
has influenza.

Cold

Now suppose that we have some evidence, say that the patient is complaining of a
fever, and that we would like to know whether the patient has influenza. This is shown in
Figure 2. The evidence presented to the BN is the fact that the random variable PF is true.
The query is the value of the Flu random variable. The evidence is asserted by conditioning
on the evidence. This is where Bayes’ law finally appears and is the reason why BNs are
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named after Bayes. To compute this distribution, one first selects the terms of the JPD
that satisfy the evidence, compute the marginal distribution, and finally normalize to get
a probability distribution. This last step is equivalent to dividing by the probability of the
evidence.

To see why this is equivalent to Bayes’ law, consider the case of two Boolean random
variables A and B joined by an edge from A to B. The probability distribution of a Boolean
random variable is determined by just one probability, so it is essentially the same as an
event. Let A and B be the two events in this case. The BN is specified by giving Pr(A),
Pr(B | A) and Pr(B | not A). Suppose that one is given the evidence that B is true.
What is the probability that A is true? In other words, what is Pr(A | B)? The JPD
of this BN is given by the four products Pr(B | A)Pr(A), Pr(not B | A)Pr(A), Pr(B |
not A)Pr(not A), and Pr(not B | not A)Pr(not A). Selecting just the ones for which B
is true, gives the two probabilities Pr(B | A)Pr(A) and Pr(B | not A)Pr(not A). The
sum of these two probabilities is easily seen to be Pr(B). Dividing by Pr(B) normalizes
the distribution. In particular, Pr(A | B) = Pr(B | A)Pr(A)/Pr(B), which is exactly the
classical Bayes’ law.

Returning to the problem of determining the probability of influenza, the evidence
requires that we select only the terms of the JPD for which PF is true, then compute the
marginal. Integrating over the temperature results in the first column of Table 3 which is
the following:

Table 4

Event A Pr(PF and A)
not(Flu) and not(Cold) | (0.9999)(0.99)(0.01) = 0.0099
not(Flu) and (Cold) | (0.9999)(0.01)(0.10) = 0.0010
(Flu) and not(Cold) | (0.0001)(0.99)(0.90) = 0.0001
(Flu) and (Cold) (0.0001)(0.01)(0.95) = 0.0000

We are only interested in the Flu node, so we sum the rows above in pairs to get:

Table 5

Event A | Pr(PF and A)
not(Flu) | 0.0109
(Flu) 0.0001

Normalizing gives Pr(Flu) = 0.009. Thus there is less than a 1% chance of having the
flu even if one is complaining of a fever. This increases the probability of having the flu
substantially over the case of no evidence, but it is still relatively low.

The most general form of BN inference is to give evidence in the form of a probability
distribution on the evidence nodes. The only difference in the computation is that instead
of selecting the terms of the JPD that satisfy the evidence, one multiplies the terms by the
probability that the evidential event has occurred. In effect, one is weighting the terms by



the evidence. We leave it as an exercise to compute the probability of the flu as well as
the probability of a cold given only that there is a 30% chance of the patient complaining
of a fever.

BN inference is substantially more complex when the evidence involves a continuous
random variable. We will consider this problem later. Not surprisingly, many BN tools
are limited to discrete random variables because of this added complexity.

In principle, there is nothing special about any particular node in the process of BN
inference. Once one has the JPD, one can assert evidence on any nodes and compute the
marginal distribution of any other nodes. However, BN algorithms can take advantage of
the structure of the BN to compute the answer more efficiently. As a result, the pattern
of inference does affect performance in practice. The various types of inference are shown
in Figure 3. Generally speaking, it is easier to infer in the direction of the edges of the
BN than against them. Inferring in the direction of the edges is called causal inference.
Inferring against the direction of the edges is called diagnostic inference. Other forms of
inference are called mized inference.

e idence

nce
Mixed

Inference

Diagnostic Causal

Inference Inference

Figure 3: Various types of inference. Although information about any of the nodes (random
variables) can be used as evidence, and any nodes can be queried, the pattern of inference
determines the computational complexity for obtaining inferred probability distribution.

So far we have considered only discrete nodes. Continuous nodes add some additional
complexity to the process. There are several ways to deal with such nodes:

1. Discretize. The possible values are partitioned into a series of intervals, and one
only considers which interval occurs. This has the disadvantage that it reduces the
accuracy of the answer. However, it has the advantage that one only has to deal with
discrete nodes. Many BN tools (such as MSBNx [26]) can only deal with discrete
random variables, and one must discretize all continuous random variables to use
such tools.

2. Restrict to one class of distributions. A common restriction is to use only normal
(Gaussian) distributions. This choice is supported by the central limit theorem.
As in the case of discretization, it reduces the accuracy of the answer. (In fact,
discretization is a special case of this assumption.) The advantage of this assumption
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is that the number of parameters needed to specify a distribution can be reduced
dramatically. In the case of (single-variable) normal distributions, one needs only
two parameters. There are many other choices for class of distribution that can be
used. There will always be a trade-off between improved accuracy versus the increase
in computational complexity. Since there will be many sources of error over which
one has no control, the improvement in accuracy resulting from a more complex class
of distribution may not actually improve the accuracy of the BN.

3. Use analytic techniques. This is more a theoretical than a practical approach. Only
very small BNs can be processed this way, and it is difficult to automate. Further-
more, the comment above about sources of error over which one has no control also
applies here.

The techniques above are concerned with the specification of PDs. A CPD is a function
from the possible values of the parent nodes to PDs on the node. If there are only a
few possible values of the parent nodes (as in the diagnostic example in Figure 1), then
explicitly listing all of the PDs is feasible. Many BN tools have no other mechanism for
specifying CPDs. When the number of possible values of the parent nodes is large or even
infinite, then the CPD may be much better specified using an analytic function. In the
infinite case, one must use this technique. Curve fitting techniques such as least squares
analysis can be used to choose the analytic function based on the available data.

A BN with both discrete and continuous nodes is called a hybrid BN. The diagnostic BN
example above is a hybrid BN. When continuous nodes are dependent on discrete nodes,
inference will produce a compound (mixed) Gaussian distribution. Such a distribution
is the result of a compound process in which one of a finite set of Gaussians is selected
according to a probability distribution, and then a value is chosen based on the particular
Gaussian that was selected. Compound Gaussians are harder to deal with than simple
Gaussians, so it is common to merge (or fuse) the mixture to a single Gaussian. This is
discussed in Section 3.2.

If a discrete node is dependent on continuous nodes, then the discrete node can be
regarded as forming a classifier since it takes continuous inputs and produces a discrete
output which classifies the inputs. The CPDs for this situation are usually chosen to be
logistic/softmax distributions. Connectionist (also called neural) networks are an example
of this.

BNs are not the only graphical representation for stochastic models. Undirected graph-
ical models, also called Markov Random Fields (MRFs) or Markov networks, are also used,
especially in the Physics and vision communities.

One application of BNs is to assist in decision making. To make a decision based on
evidence one must quantify the risk associated with the various choices. This is done by
using a utility function. It is possible to model some utility functions by adding value nodes
(also called wutility nodes to a BN and linking them with dependency edges to ordinary BN
nodes and to other utility nodes. The result of a decision is an action that is performed,
and these can also be represented graphically by adding decision nodes and edges to a BN
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augmented with utility nodes. A BN augmented with utility and action nodes is called
an influence diagram (also called a relevance diagram) [22]. An influence diagram can, in
principle, be used to determine the optimal actions to perform so as to maximize expected
utility.

2.4 Dynamic and Evolving Bayesian Networks

BNs can be dynamic in several very different ways:

1. The BN can represent stochastic processes that vary in time. BNs generalize stochas-
tic dynamic systems, in general, and hidden Markov models in particular. However,
the BN structure (including both the CPDs and the graph) do not vary.

2. The probabilistic structure of the BN could vary in time. In other words, the entries
in the CPDs could change, but the BN graph does not.

3. The BN graph could vary in time by changing the set of nodes as well as the set of
edges. This is the most extreme kind of variation.

Of these three kinds of dynamic BN, only the first is normally given the name dynamic
Bayesian network and the acronym DBN. Consequently some other name must be used
for a BN that truly varies in time. We will call it an evolving Bayesian network.

X, X X X —
i ¥ ¥ ¥
Y Y Y, Y |
l ¥ h 4 h 4
Z, Z, Z, Z,

Figure 4: A Dynamic Bayesian Network. Each column represents one point in time (a
“time slice”).

A DBN is modeled by repeating the BN once for each “time slice”. An example of a
3-node DBN is shown in Figure 4. Each node is duplicated in each time slice. The nodes
that specify the dynamics have the property that each copy of the node in one time slice
is dependent on one or more nodes in the previous time slice. The structure of the DBN is
exactly the same in each time slice. Furthermore, the CPDs specifying the dependencies
between time slices are the same for every time slice.
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An evolving DBN can change by modifying CPDs without changing the structure of the
dependencies. This is shown in Figure 5. The changes to the CPDs can be obtained using
incremental versions of the same techniques that are used for constructing the original
CPD. These are discussed in Section 3.1 below.

X

f |

Y R — - X
evolves

F
w

X not X
X not X

Y 0.35 [ 0.65
notyY | 0.17 | 0.83

Y 0.39 0.61
notY | 0.12 0.88

Figure 5: An Evolving Bayesian Network in which a CPD has changed.

It is also possible for the dependencies to change. In Figure 6, the BN has acquired
a new node and edge. As a result it also now has an additional CPD. This CPD can be
obtained from an already known template using the techniques discussed in Section 4.2.
The CPD may subsequently evolve as discussed above.

Allowing BNs to evolve is important when one is modeling situations. Awareness of
the current situation is essential in complex tasks such as coordinating responses to an
emergency (e.g., extreme weather, accidents, fires and terrorist acts). In addition to the
uncertainties involved in such situations, they also evolve, sometimes quite rapidly.

4

X = Y —— - X
evolves

Y

Il
N

X | ASEX x| not x ¥ | noty

¥ 1035 ]| 0.85 ¥y |035| o865 Z | 043 ]| 057
notY | 0.17 | 0.83 noty|0.17 | 0.83 not Z | 0.03 | 0.97

Figure 6: An Evolving Bayesian Network which as acquired a new node.

One important requirement for situation awareness is to be aware of the relevant entities
in the region of interest as well as their characteristics. However, this alone is not sufficient
for one to have situation awareness. One must also understand the relationships between
the entities. This makes situation awareness especially difficult because of the large number
of potential relationships between entities.

Situation awareness was originally concerned with human situation awareness, and
research in this area focused on improving the human-computer interface to assist the
human in achieving situation awareness [9]. However, more recently situation awareness
is being studied as a form of data fusion based on ontologies and logical inference. A core
ontology for situation awareness has been formalized [4, 34], and techniques have been
developed for propagating uncertainty in situations using fuzzy logic [34] as well as using
BNs [28].
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2.5 Exercises

1. In the diagnostic BN in Figure 1, one can use either a temperature measurement or
a patient’s perception of a fever to diagnose influenza. Although these two measure-
ments are a prior: independent, they become dependent when one observes that the
patient has the flu or a cold. In statistics this is known as Berkson’s paradox, or
“selection bias.” It has the effect that a high temperature can reduce the likelihood
that a patient reports being feverish and vice versa. Compute the JPD of the PF
and T nodes in this BN given the observation that the patient has influenza.

2. Compute the probability that a patient has influenza using temperature measure-
ments. For example, try 37, 38, 39 and 40 degrees. These are all (in theory) exact
measurements. In fact, a thermometer, like all sensors, can only give a measure-
ment that is itself a random variable. Compute the probability of influenza given
a temperature of 38.40 degrees, normally distributed with standard deviation 0.20
degrees.

3 Constructing Bayesian Networks

This section gives some background on current statistical methods for constructing and
evaluating probability distributions. It begins with an overview of techniques for empiri-
cally determining PDs, CPDs and BNs from data. Such data is regarded as being used to
“train” the probabilistic model, so the techniques are known as machine learning methods.
In Section 3.2 a somewhat different point of view is taken in which information of various
kinds is combined or “fused”. Although these techniques are closely related to machine
learning, they are known as data fusion methods. Issues related to evaluation and testing
of BNs are discussed in Section 3.3, and this part of the paper ends in Section 3.4 by
considering the problem of representing BNs as well as the relationship between BNs and
ontologies.

3.1 Machine Learning

This is a very large area that would be difficult to survey adequately, so we give only
an overview. Since a BN is just a way of representing a JPD, virtually any data mining
technique qualifies as a mechanism for constructing a BN. It is just a matter of expressing
the end result as a BN. For example, one might be interested in the body mass index
(BMI) of individuals in a research study. The individuals have various characteristics,
such as sex and age. Computing the average BMI of individuals with respect to these two
characteristics gives rise to a three-node BN as in Figure 7. The CPD for the BMI node
gives the mean and standard deviation of the BMI for each possible combination of sex
and age in the study.
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Figure 7: Bayesian network for the result of a research study of body mass index as a
function of age and sex.

It is common to assume that the CPDs are independent of each other, so they can
be estimated individually. When data for both the parent nodes and the child node are
available, estimating the CPD reduces to the problem of estimating a set of PDs, one for
each of the possible values of the parent nodes. There are many techniques for estimating
PDs in the literature. They can be classified into two categories:

1. Frequentist methods. These methods are associated with the statistician and ge-
neticist Ronald Fisher, and so one sometimes sees at least some of these methods
referred to as Fisherian. They also go by the name mazimum likelihood (ML) esti-
mation. The CPDs of discrete nodes that are dependent only on discrete nodes are
obtained by simply counting the number of cases in each slot of the CPD table. This
is why these techniques are called “frequentist”. The CPDs for Gaussian nodes are
computed by using means and variances. Other kinds of continuous random variable
are computed using the ML estimators for their parameters.

2. Bayesian methods. These methods also go by the name mazimum a posteriori (MAP)
estimation. To perform such an estimation, one begins with a prior PD, and then
modifies it using the data and Bayes’ law. This is a special case of a more general
process, discussed in Section 3.2, whereby known CPDs can be improved by using
additional data or by using other BNs. The use of an arbitrary prior PD makes
these methods controversial. However, one can argue that (in most cases) the ML
technique is just the special case of MAP for which the prior PD is the uniform
distribution. In other words, the prior PD is the one which represents the maximum
amount of ignorance possible. However, the uniform distribution does not always
exist, and when it does, there can be several choices for it. So one is making an
arbitrary choice even in for the ML technique. If one has some prior knowledge, even
if it is subjective, it is helpful to include it in the estimation. As the amount of data
and learning increase, the effect of the prior PD gradually disappears.

The estimation techniques discussed above assume that data about all of the relevant
nodes was available. This is not always the case. When one or more node is not directly
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measurable, one can either remove it from the BN (as discussed in Section 4.5) or attempt
to estimate it indirectly. The latter can be done by using BN inference iteratively. One
treats the unobservable nodes as query nodes and the observable nodes as evidence nodes
in a BN inference process. One then computes the expectations of the unobservable nodes
and uses these values as if they were actually observed. One can then use ML or MAP as
above. This whole process is then repeated until it converges. This technique is known as
Ezpectation Mazimization (EM).

It is possible to use learning techniques to learn the structure of the BN graph as well
as the CPDs. These tend to have very high computational complexity, so they can only
be used for small BNs. In practice, it is much better to start with a carefully designed BN
and then modify it in response to an evaluation of the quality of its results.

Connectionist networks are a class of BNs that are designed for efficient machine learn-
ing. Such BNs are most commonly known as “neural networks” because they have a
superficial resemblance to the networks of neurons found in vertebrates, even though neu-
rons have very different behavior than the nodes in connectionist networks. Many kinds
of connectionist network support incremental machine learning. In other words, they con-
tinually learn as new training data is made available. In other words, they are evolving
BNs as discussed in Section 2.4, an example of which is shown in Figure 5. For example,
in the diagnostic BN in Figure 1, some of the patients may be tested for influenza using a
more accurate (but more expensive) flu test. This information could be used to improve
the CPD entries.

Connectionist networks constitute a large research area, and there are many software
tools available that support them. There is an extensive FAQ for neural networks including
lists of both commercial and free software [42]. Although connectionist networks are a
special kind of BN, the specification of a connectionist network is very different from the
specification of a BN. As a result, the results for connectionist networks may not apply
directly to BNs or vice versa. However, BNs are being used for connectionist networks [33]
and some connectionist network structures are being incorporated into BNs as in [36].

3.2 Information Fusion

Stochastic models are a versatile language for expressing any kind of uncertainty. Mea-
surements are intrinsically uncertain, and the uncertainty of measurements by instruments
(such as sensors) are very well understood. When multiple sensors of various types have
overlapping ranges, it is necessary to combine their measurements. The process of seam-
lessly integrating data from disparate sources is most commonly called data fusion, al-
though it has also been called reconciliation. Although multisensor data fusion originated
in military applications, the techniques are now also being used in many other applica-
tions. Data fusion is especially important for situation awareness. In fact, in the standard
architecture for data fusion [47], situation awareness is one of the levels of data fusion.
Measurement uncertainty and data fusion have been recognized as being an important
BN design patterns [37]. However, this is not the same as deriving CPDs using data fusion.
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While this should, in principle, be an effective method for deriving BNs, it must be done
with considerable care, as has been shown in [8].

3.3 Evaluation and Validation

Testing and validation have always been accepted as an important part of any develop-
ment activity. This is especially true for BN development. BNs have the advantage that
there is a well-developed, sophisticated mechanism for testing hypotheses about probability
distributions. However, this is also a disadvantage because statistical hypothesis testing
generally requires more than one test case, and even with a large sample of test cases
the result can be equivocal. A BN test case is usually a specific example of a stochastic
inference.

As is the case with software engineering, constructing enough test cases to handle all
of the possibilities that can occur can be difficult or impossible. This is especially true
for large systems. Furthermore, BN development efforts usually have no precisely stated
purpose. As a result, one cannot formally test that the purpose has been achieved.

There are several ways to deal with validating BNs:

1. Sensitivity analysis. This technique determines the impact of inaccuracies of the CPD
entries by systematically varying them and recording the effects on test cases. As one
might expect, different CPD entries of BNs can have very different sensitivities [21,
41]. Aside from being useful for testing, sensitivity analysis can be used during
development by using it to focus attention on the probabilities that need to be
determined more accurately.

2. Uncertainty analysis. In this technique, all of the probabilities are varied simul-
taneously by choosing each one from a prespecified distribution that reflects their
uncertainties. One then records the effects on test cases. This technique can deter-
mine the overall reliability of a BN. However, it yields less insight into the effect of
separate probabilities than is the case for sensitivity analysis.

3. Unit testing. Smaller systems are much easier to test. Unfortunately, it is difficult to
separate the effects of one part of a BN from another. Sensitivity analysis attempts
to localize effects, but it is not a true unit test technique because the part of the BN
being tested is not isolated from the rest of the BN. With all current BN tools, one
can only test individual nodes or the entire BN: there are no intermediate internal
structures that can be tested independently. The notions of OONF and OOBN
should make it possible to perform meaningful unit testing, but few current tools
support these notions.

4. One activity that can be performed without explicitly specifying requirements is
formal consistency checking. With current BN tools, there is only one axiom that
one can check: the BN must be acyclic. OOBNs add the possibility of performing
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type-checking, and this is valuable, but it is still only syntactic. There is not yet
a notion of semantic consistency for BNs. For example, are there analogs of the
software concepts of pre-conditions and post-conditions?

5. In the absence of explicitly stated requirements, the only alternative is to involve the
stakeholders directly in the testing process. Testing would proceed by presenting a
stakeholder or group of stakeholders with randomly generated scenarios designed to
determine the accuracy of the ontology.

3.4 Ontologies to Represent Bayesian Networks

An ontology is fundamentally a language for expressing concepts in a domain. One could, in
particular, use ontologies to represent BNs. There already exists an format for representing
BNs, called the XML Belief Network format (XBN) [48]. This XML file format was
developed by Microsoft’s Decision Theory and Adaptive Systems Group. This format
evolved from a standardization effort to develop the Bayesian Network Interchange Format
(BNIF).

In the XBN format, a node is defined using a VAR element. The values that a node can
take are called states and they are specified using STATENAME elements. The directed edges
are specified using ARC elements. The CPD table for one node is specified using a DIST
element. A particular CPD for a choice of parent values is represented using a DPI element.
The XBN format does not support continuous random variables. So to represent a BN
that has such nodes it is necessary to extend the format. To represent the BN in Figure 1,
we added two attributes to the DPI element (the MEAN and VARIANCE of the distribution).
Here is what this BN looks like in terms of the XBN format:

<?7XML VERSION="1.0">
<!DOCTYPE ANALYSISNOTEBOOK SYSTEM "xbn.dtd">
<ANALYSISNOTEBOOK NAME="Diagnostic Bayesian Network Example"
ROOT="InfluenzaDiagnosis">
<BNMODEL NAME="InfluenzaDiagnosis">
<STATICPROPERTIES>
<FORMAT VALUE="MSR DTAS XML"/>
<VERSION VALUE="1.0"/>
<CREATOR VALUE="Ken Baclawski"/>
</STATICPROPERTIES>
<VARIABLES>
<VAR NAME="Flu" TYPE="discrete">
<DESCRIPTION>Patient has influenza</DESCRIPTION>
<STATENAME>Absent</STATENAME>
<STATENAME>Present</STATENAME>
</VAR>
<VAR NAME="Cold" TYPE="discrete">
<DESCRIPTION>Patient has mild upper respiratory
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viral infection</DESCRIPTION>
<STATENAME>Absent</STATENAME>
<STATENAME>Present</STATENAME>
</VAR>
<VAR NAME="PerceivesFever" TYPE="discrete">
<DESCRIPTION>Patient self-diagnoses a fever</DESCRIPTION>
<STATENAME>Absent</STATENAME>
<STATENAME>Present</STATENAME>
</VAR>
<VAR NAME="Temperature" TYPE="continuous">
<DESCRIPTION>0ral measurement of the body temperature
of the patient</DESCRIPTION>
</VAR>
</VARIABLES>
<STRUCTURE>
<ARC PARENT="Flu" CHILD="PerceivesFever"/>
<ARC PARENT="Flu" CHILD="Temperature"/>
<ARC PARENT="Cold" CHILD="PerceivesFever"/>
<ARC PARENT="Cold" CHILD="Temperature"/>
</STRUCTURE>
<DISTRIBUTIONS>
<DIST TYPE="discrete">
<PRIVATE NAME="Flu"/>
<DPIS>
<DPI>0.9999 0.0001</DPI>
</DPIS>
</DIST>
<DIST TYPE="discrete">
<PRIVATE NAME="Cold"/>
<DPIS>
<DPI>0.99 0.01</DPI>
</DPIS>
</DIST>
<DIST TYPE="discrete">
<CONDSET>
<CONDELEM NAME="Flu"/>
<CONDELEM NAME="Cold"/>
</CONDSET>
<PRIVATE NAME="PerceivesFever"/>
<DPIS>
<DPI INDEXES="0O 0">0.99 0.01</DPI>
<DPI INDEXES="0O 1">0.90 0.10</DPI>
<DPI INDEXES="1 0">0.10 0.90</DPI>
<DPI INDEXES="1 1">0.05 0.95</DPI>
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</DPIS>
</DIST>
<DIST TYPE="gaussian">
<CONDSET>
<CONDELEM NAME="Flu"/>
<CONDELEM NAME="Cold"/>
</CONDSET>
<PRIVATE NAME="Temperature"/>
<DPIS>
<DPI INDEXES="O 0" MEAN="37" VARIANCE="0.25">
<DPI INDEXES="O 1" MEAN="37.5" VARIANCE="1.0">
<DPI INDEXES="1 0" MEAN="39" VARIANCE="2.25">
<DPI INDEXES="1 1" MEAN="39.2" VARIANCE="2.56">
</DPIS>
</DIST>
</DISTRIBUTIONS>
</BNMODEL>
</ANALYSISNOTEBOOK>

The scientific research literature is a huge repository of knowledge about the natural
universe. Representation languages have been developed for some parts of this literature.
For example, there has been extensive work on representing, querying and inferring from
experimental procedures (usually called “Materials and Methods”) [2, 3, 14, 15, 12, 16, 10].

Most of the scientific research literature includes probabilistic information. The results
of experiments, for example, can be expressed as a stochastic model. Thus a complete
specification of an experiment, including both how it was conducted and what resulted from
it, requires an ontology that includes both procedural information and BNs. Techniques
have been developed for extracting Materials and Methods information (cf., the citations
above), but there are not yet techniques for extracting the results of the experiments.

4 Software Development Techniques for Bayesian Net-
works

We now consider the important question of how to construct BNs and compare the develop-
ment of BNs with the development of software. While there are many tools for performing
inference in BNs, the methodology commonly employed for developing BNs is rudimentary.
A typical methodology looks something like this:

1. Select the important variables.
2. Specify the dependencies.
3. Specify the CPDs.
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4. Evaluate.
5. Iterate over the steps above.

Furthermore, the first three steps are usually performed by eliciting the information from
experts. As a result the BNs can be highly subjective. In principle, the evaluation phase
should be able to deal with this, but that is analogous to producing software by iterating
the loop of programming (without any explicit requirements or design) and testing.

This simple methodology will work for relatively small BNs, but as in the case of soft-
ware, it does not scale up to the larger BNs that are now being developed. Consequently,
methodologies and processes for BN development have been developed, usually by adapting
software engineering methodologies and processes.

The following are some of the software development techniques that can be used as
part of the process of constructing BNs, and each of them is discussed in more detail in
its own section:

1. Systematic requirements engineering. Without clearly stated requirements, it is dif-
ficult to determine whether a BN has been successfully developed.

2. Ontologies. Although ontologies are emerging as an important tool for dealing with
some important issues facing information processing, no ontological framework for
BNs has been proposed that would use the ontology for more than just background
and documentation.

3. Design patterns. This is a popular technique in software engineering, and they have
also been used in BN network development. A BN development methodology has
been introduced in [37] that is based on design patterns.

4. Refactoring. A BN can be improved by adjusting its structure. Unlike refactoring in
software, the consequences of such modifications are usually not obvious. Substantial
software assistance is necessary to support this mechanism. A BN development
process has been introduced in [29] that is based primarily on refactoring.

5. Object-oriented and component-based techniques. These have only recently been
successfully introduced to the field of BNs in [28]. However, there is much more that
needs to be done.

All of these techniques show promise for assisting in BN development. However, all of
them are being applied more by analogy than by direct integration.

4.1 Requirements Engineering

Modern software development process models include a requirements phase, and there is
a substantial literature on this subject, including a journal exclusively devoted to it [32].
This activity involves domain experts (also known as subject matter experts or SMEs).
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Current BN development also employs SMEs. In fact, most of the development can be
attributable to the judgments and expertise of the SMEs. Consequently SMEs are involved
throughout the development process.

While SMEs are involved in both requirements analysis and knowledge acquisition, their
role is very different in the two cases. Requirements analysis not only involves acquiring
an understanding of the domain, it also determines the required function, performance,
behavior, and interfaces. BN development typically omits these latter requirements. In-
deed, the notion of an BN interface is only now beginning to be understood (cf., [28, 27]).
In most cases, BN development projects have no explicitly stated purpose, no separate
requirements phase and no requirements document. When there is a stated purpose, it
is usually too generic to be useful in the development process. Having a detailed stated
purpose would not entirely determine the required function, performance, behavior and
interfaces, but it would certainly help.

Because the amount of knowledge to be acquired may be very large, it is important for
the knowledge to be structured. It is also important to track the source of knowledge so
that one can determine its trustworthiness. These issues can be addressed to some degree
by using ontologies (see Section 4.5 above). Of course, ontologies should also be developed
using a well structured methodology as was discussed in [1].

4.2 Object-Oriented Techniques

Object-oriented (OO) techniques offer several possible advantages. The first is the possi-
bility of a more systematic design phase in BN development. Another advantage is that
using an OO design might be able to improve performance.

A notion of object-oriented BN (OOBN) was introduced in [28] that shows considerable
promise as the basis for using OO techniques in BN development. The basic OOBN concept
is called an “object” which is similar in many ways to the notion of object in object-oriented
systems. An OOBN object can be just a random variable, but it can also have a more
complex structure via attributes whose values are other objects. An OOBN object can
correspond to an entity or it can be a relationship between entities.

A simple OOBN object corresponds to a BN node. It has a set of input attributes (i.e.,
the parent nodes in the BN) and an output attribute (i.e., its value). A complex OOBN
object has input attributes just as in the case of a simple OOBN object, but a complex
object can have more than one output attribute. It can also have encapsulated attributes
that are not visible outside the object. A complex object corresponds to several BN nodes,
one for each of the outputs and encapsulated attributes. In principle, the notion of a
complex object is just a mechanism for grouping nodes in a BN. The JPD and the process
of inference are exactly the same whether or not the grouping is used.

However, by grouping (encapsulating) nodes into objects, one gains a number of sig-
nificant advantages:

1. Complex objects can be assigned to classes which can share CPDs. By reusing CPDs,
this greatly simplifies the task of specifying a BN.
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2. The complex objects have an interface which can be used for validating the BN. This
is similar to type-checking in OO languages.

3. Classes can inherit from other classes which allows for still more possibilities for
reuse.

4. Encapsulation can be used during inference to improve performance. This advan-
tage is especially compelling. As shown in [28], if a BN has an OO structure, then
the performance of inferencing can be improved by an order of magnitude or more
compared with even a well optimized BN inference algorithm.

Another development feature of OOBNs is the notion of an object-oriented network
fragment (OONF). An OONF is a generalization of a BN which specifies the conditional
distribution of a set of value attributes given some set of input attributes. If there are no
input attributes, then an OONF is a BN. An OONF can be defined recursively in terms of
other OONFs, An OONF can also be used as a component which can be “reused” multiple
times in a single BN. For example, one can use OONF to introduce the OO concept of a class
to BNs. Component-based methods are a powerful development methodology that allow
one to build BNs from standard components that have been constructed independently.

While the notions of OONF and OOBN show great promise as a BN development
methodology, they do not integrate BNs with software development. The OO techniques
used in OOBNs are by analogy only.

4.3 Ontologies as Bayesian Networks

Ontologies are emerging as an important tool for dealing with some of the most important
issues facing information processing:

1. Ever larger amounts of data are available at much faster rates.
2. Data structures are increasing in their complexity.
3. Much more diverse sources of information are becoming relevant to each activity.

These trends have also increased interest in automating many activities that were tradi-
tionally performed manually. Web-enabled agents represent one technology for addressing
this need [35]. These agents can reason about knowledge and can dynamically integrate
services at run-time. Formal ontologies are the basis for such agents.

The Resource Description Framework (RDF) [30] and the Web Ontology Language
(OWL) [44] are ontology language standards developed under the auspices of the World
Wide Web Consortium. RDF is the basic language with the minimum number of constructs
necessary for expressing ontologies. OWL adds features to RDF in a series of three versions
(or levels), called OWL Lite, OWL-DL and OWL Full. The distinctions between RDF and
OWL and among the three OWL levels are explained in [50].
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The DL in OWL-DL stands for “description logic”. This is a form of logic that class
construction as the primary modeling mechanism. A class is essentially the same as the
notion of set in mathematics. A class is constructed by specifying its members using
other classes. For example, the definition of autoradiography is “A technique that uses
X-ray film to locate radioactively labeled molecules or fragments of molecules.” From a
DL perspective, autoradiography is a class consisting of those members of the technique
class that use X-ray film to locate radioactively labeled molecules or fragments of molecules.
Queries to an OWL-DL ontology would mostly be concerned with whether or not a specific
entity belongs to a specified class.

Expressing BNs using richer ontology languages, such as RDF or OWL, would be
beneficial for a number of reasons.

1. One can take advantage of language constructs that exist in RDF and OWL that
cannot be expressed in XML alone.

2. RDF and OWL have inferencing capabilities that XML does not have.

3. A rules language is being developed for OWL. If BNs were expressed using OWL,
then it should be possible to specify both crisp, logical rules and fuzzy, probabilistic
rules in the same document.

4. The BN can be annotated with additional information integrating it with other kinds
of information.

One of the earliest large BNs was the QMR-DT mentioned in Section 2 which added
probabilities to an expert system. The close connection between expert systems and on-
tologies would suggest that it ought to be possible to “add probabilities” to ontologies.
Perhaps because of this analogy, an active research area has developed that is attempting
to do this for ontologies, especially for ontologies based on description logic. See [7, 27].

Given an OWL-DL ontology, the corresponding BN has one node for each class. This
node is a Boolean random variable which is true if and only if an entity belongs to the
class. Relationships between classes give rise to edges between the nodes of the classes.
The most common relationship is the subclass relationship which means that one class is
contained in another. Obviously this will result in a stochastic dependency. Other kinds
of relationship can be expressed in terms of classes. For example, the age of a person
(in years) gives rise to a collection of disjoint subclasses of the person class, one for each
possible value of the age of a person.

Although this technique does seem to be a natural way to “add probabilities” to ontolo-
gies, it does not seem to produce BNs that are especially useful. The most peculiar feature
of these BNs is that all of the classes are ultimately subclasses of a single universal class
(called the Thing class), and the random variable for a class represents the probability
that a randomly chosen thing is a member of the class. While this might make sense for
some class hierarchies, the hierarchies of ontologies often contain a wide variety of types
of entity. For example, a biomedical ontology would contain classes for research papers,
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journals, lists of authors, drugs, addresses of institutions, etc. It is hard to see what kind
of experiment would sometimes produce a drug, other times produce a list of authors and
still other times produce an address.

On the other hand, this technique can be the starting point for BN development,
especially for diagnostic BNs. An example of this is discussed in Section 4.5, where the
ontology is used as the background for the development of a BN. The disadvantage of
using ontologies this way is that whatever formal connection exists between the ontology
and the BN is quickly lost as the BN is modified. As a result, one cannot use any logical
consequences entailed by the ontology during BN inference. Indeed, the ontology ultimately
furnishes no more than informal documentation for the BN.

4.4 Design Patterns

Design patterns for BNs were introduced by [37], where they were called “idioms.” Five
idioms were identified by [37]:

1. Definitional /Synthesis. This pattern models the synthesis or combination of many
nodes into one node. It also models deterministic definitions.

2. Cause-Consequence. This models an uncertain causal process whose consequences
are observable.

3. Measurement. This models the uncertainty of a measuring instrument.

4. Induction. This models inductive reasoning based on populations of similar or ex-
changeable members.

5. Reconciliation. This models the reconciliation (also called fusion) of results from
competing sources.

Other authors have mentioned patterns that may be regarded as being design patterns,
but in a much more informal manner. For example in [36] quite a variety of patterns are
shown such as the DBMs reproduced in Figure 8. In each of the patterns, the rectangles
represent discrete nodes and the ovals represent Gaussian nodes. The shaded nodes are
visible (observable) while the unshaded nodes are hidden. Inference typically involves
specifying some (or all) of the visible nodes and querying some (or all) of the hidden
nodes.

4.5 Refactoring

In a series of articles Helsper and van der Gaag [17, 20, 18, 19] are developing a method-
ology for BN development that uses ontologies. The authors have studied the use of their
methodology within the domain of oesophageal cancer.
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Figure 8: Various informal patterns for DBNs. These examples are taken from [36].

The Helsper methodology uses ontologies more as a background for the design process
than as a formal specification for the BN structure. This is in contrast with the OOBN
technique in Section 4.2 in which the object-oriented design specifies not only the BN
completely but it is also used in the inference algorithm. In the Helsper methodology
the ontology is used to provide an initial design for the BN in a manner similar to the
way that this is done in Section 4.3. This step in the methodology is called translating.
However, this initial design is modified in a series of steps based on domain knowledge.
Some of this is available in the ontology but most of it must be elicited from domain
experts. The ontology “serves to document the elicited domain knowledge.” The purpose
and requirements of the BN are also important, but it is not clear whether the Helsper
methodology has a separate requirements phase.

What makes the Helsper-van der Gaag methodology interesting is the systematic mod-
ification techniques that are employed. The methodology refers to this phase as improving
and optimizing. The modifications must follow a set of guidelines, but these guidelines are
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only explained by examples in the articles. It appears that these modification techniques
are similar to the refactoring that have been thoroughly described in software engineering.

One example of a refactoring operation used by Helsper and van der Gaag is shown in
Figure 9. In this operation, a node that depends on two (or more) other nodes is eliminated.
This would be done if the node being eliminated is not observable or if it is difficult
to observe the node. There are techniques for determining the CPDs for unobservable
nodes such as the EM algorithm discussed in Section 3.1. However, this algorithm is time
consuming. Furthermore, there is virtually no limit to what one could potentially model,
as discussed in Section 2.1. One must make choices about what is variables are relevant,
even when the could be observed, in order to make the model tractable.

Figure 9: Refactoring by eliminating a node that other nodes depend on. The result is
that the parent nodes become dependent on each other.
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When a node is dependent on other nodes, the other nodes (which may otherwise
be independent) become implicitly dependent on each other via the dependent node. In
statistics this is known as Berkson’s paradox, or “selection bias.” The result of dropping
a node is to make the parent nodes explicitly dependent on each other. This dependency
can be specified in either direction, whichever is convenient and maintains the acyclicity
of the BN.

The refactoring operation shown in Figure 9 changes the JPD of the BN because one of
the variables is being deleted. Furthermore, the new JPD need not be just the distribution
obtained by marginalization to remove the deleted variable. At best, the new BN is a
approximation to the marginalization of the original BN.

It is a general fact that the direction of a directed edge in a BN is probabilistically
arbitrary. If one knows the JPD of two random variables, then one can choose either
one as the parent node and then compute the CPD for the child node by conditioning.
In practice, of course, the specification works the other way: the JPD is determined by
specifying the CPD. For a particular modeling problem, the direction of the edge will be
usually be quite clear, especially when one is using a design pattern.

However, sometimes the direction of the dependency is ambiguous, and one of the
refactoring operations is to reverse the direction. In this case the JPD is not changed by
the operation. This situation occurs, for example, when two variables are Boolean, and one
of them subsumes the other. In other words, if one of the variables is true, then the other
one is necessarily true also (but not vice versa). Suppose that X and Y are two Boolean
random variables such that X implies Y. Then we know that Pr(Y = true | X = true) = 1.
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This gives one half of the CPD of one of the variables with respect to the other, and the
dependency can go either way. This is shown in Figure 10
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Figure 10: Refactoring by reversing the direction of a dependency when two Boolean nodes
are related by subsumption.

5

Conclusion

This paper has presented the current state of the art in BN development methods. While
these methods show great promise, many difficult challenges remain. Some of the major
open problems of BN development are:

1.

Better development methodologies. Some excellent progress has been made, but this
problem remains open. This is especially true for dynamic and evolving BNs.

Better evaluation measures and methods. This is not just a question of better testing.
It also requires better requirements gathering techniques so that one knows what is
to be tested.

Closer connections with logic. The simple approaches that have been tried so far
have not led to BNs that are very useful. Formal specifications of the rules for a BN
to evolve promises a much deeper and more useful connection of logic and ontologies
to BNs.

Better integration with dynamic systems. Classical dynamic systems can be ex-
pressed in terms of BNs. However, the structure of such BNs does not vary over
time. Techniques for building and managing dynamically evolving BNs have yet to
be developed.

Development of standard representations for interoperability. While there is an XML
format for Bayesian networks, it is still rudimentary and has yet to be standardized.

b}

Information fusion of BNs. This problem is also known as “reconciliation.” Fusion
of probability distributions is well known and a very active area. However, it has yet

to be extended to general BNs.

Natural language extraction of BNs. Extracting the BNs from scientific and engi-
neering articles holds the potential for a considerably richer and deeper style of data
mining from the literature.
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Many techniques from software engineering, such as object-oriented techniques, ontologies,
design patterns and refactoring, have analogs in BN development, and further elaboration
of these analogies should help to meet these challenges. It is hoped that this paper will
encourage further work in this area.
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