
A Core Ontology for Situation Awareness

Christopher J. Matheus
Versatile Information Systems, Inc.

Framingham, MA, USA
cmatheus@vistology.com

Mieczyslaw M. Kokar
Northeastern University,

Boston, MA, USA
kokar@coe.neu.edu

Kenneth Baclawski
Northeastern University,

Boston, MA, USA
ken@baclawski.com

Abstract - In this paper we present an ontology for
situation awareness. One of our goals is to support the
claim that this ontology is a reasonable candidate for
representing various scenarios of situation awareness.
Towards this aim we provide an explanation of the
meaning of this ontology, show its expressiveness and
demonstrate its extensibility. We also compare the
expressiveness of this ontology with alternative
approaches we considered during the design of the
ontology. We then show how the ontology can be adapted
to handle domain-specific situations by readily extending
the core language. The extensions include adding
subclasses, sub-properties and additional attributes to the
core ontology. We conclude with an example of how the
ontology can be used to annotate specific instances of a
situation.

Keywords: Situation awareness, ontology, formal method,
information fusion, relation derivation, events.

1 Introduction
 Maintaining a coherent situation awareness (SAW)
concerning all units operating in a region of interest (e.g.,
battlefield environment, emergency disaster scene,
counter-terrorism event) is essential for achieving
successful resolution of an evolving situation. The process
of achieving SAW is called situation analysis. The
primary basis for SAW is knowledge of the objects within
the region of interest, typically provided by “sensors”
(both mechanical and human) that perform object
identification and characterization -- in military parlance
these are known as level 1 sensors [1]. Although
knowledge of the individual objects and their current
attributes is essential, this does not by itself constitute
complete “awareness” – SAW also requires knowing the
relations among the objects that are relevant to the current
operation. For example, simply knowing that there is a
friendly tank and an enemy tank on the battlefield may not
be as important as knowing that the enemy tank is “in
firing range” of the friendly tank.
 Systems that assist in situation analysis require the
ability to represent objects and maintain information about
their attributes and relationships with other objects as they
evolve over time. This necessitates a model (or more
formally, a theory) of how the world of the situation
“works” in the eyes of those doing the analysis. Such a

model can be partially defined by an ontology that
describes a set of entities (concrete and/or abstract) and the
relationships they can have with each other [2]. Clearly,
different classes of situations will necessitate different
ontologies so as to appropriately define the various objects
and relations relevant to their specific domains. We have
constructed a core ontology for SAW that provides a basis
from which to build ontologies for arbitrary situations. At
the center of this model are objects, relations and events.
The relationships between these core entities are defined
such that a system based on this ontology will be able to
represent and capture sufficient information about a
situation to support high-level reasoning, which is a
primary goal of our research [3].
 The development of the ontology proceeded over many
months and involved consideration of several alternative
approaches. The most challenging aspects of the design
revolved around the problem of representing values of
attributes and relations that evolve over time and space. In
this paper we relate some of these issues and discuss the
advantages and disadvantages of various alternative
approaches.
 In the next section we provide some general
background information on SAW, including our formal
definition of SAW. This leads into a description of the
core SAW ontology followed by a discussion of some
important design decisions. To demonstrate how the
ontology can be extended to specific domains we introduce
a simple battlefield scenario and show how it can be
accommodated through the sub-classing of a small number
of core SAW classes. Finally, we provide an example of
the use of this domain-specialized ontology to describe a
specific scenario using the DARPA Agent Markup
Language (DAML).

2 Situation Awareness
 A number of philosophers and logicians introduced
concepts similar to that of a situation, including von Mises
[4] in 1949 and Bunge [5] in the 1970s. However, the
earliest formal notion of situation (although not situation
awareness) was introduced by Barwise as a means of
giving a more realistic formal semantics for speech acts
than what was then available [6]. In contrast with a
“world” which determines the value of every proposition, a
situation corresponds to the limited parts of reality we
perceive, reason about, and live in. With limited

In Proceedings of Sixth International Conference on Information Fusion, pages 545-552, Cairns, Australia, July 2003.

information a situation can provide answers to some but
not all questions about the world. Furthermore, in
situation semantics, basic properties, relations, events and
even situations are reified (i.e., made concrete) as objects
to be reasoned about [7]. Note that once a situation is
made into a concrete object, various properties can be
associated with the situation. While Barwise's situation
semantics is only one of the many alternative semantic
frameworks currently available, its basic themes have been
incorporated into most others.
 The specific term situation awareness is most
commonly used by the Human-Computer Interaction (HCI)
community (cf., Endsley and Garland [8]). The concerns
of this community are to design computer interfaces so that
a human operator can achieve SAW in a timely fashion.
From this point of view, SAW occurs in the mind of the
operator. In almost any fairly complex system, such as
military aircraft and nuclear reactors, manual tasks are
being replaced by automated functions. However, human
operators are still responsible for managing SAW. This
raises new kinds of problems due to human limitations in
maintaining SAW. The SAW literature gives many
examples of incidents and accidents, which could have
been avoided if operators had recognized the situation in
time.
 Situation awareness is also used in the data fusion
community where it has been more commonly referred to
as situation assessment. Data fusion is an increasingly
important element of diverse military and commercial
systems. The process of data fusion uses overlapping
information to detect, identify and track relevant objects in
a region. The term “data fusion” is used because
information originates from multiple sources. More
succinctly, data fusion is the process of combining data to
refine state estimates and predictions [1].

Fusion Level
Association

Process Estimation Entity
Estimation

L.0 Sub-
Object
Assessment
L.1 Object
Assessment

Assignment Detection
Attribution

Signal
Physical
Object

L.2 Situation
Assessment
L.3 Impact
Assessment

Aggregation
Relation

Plan
Interaction

Aggregation
Effect

(Situation
given Plans)

L.4 Process
Refinement Planning (Control) (Action)

Table 1 JDL’s 5 Levels of Data Fusion

 The terminology of data fusion has been standardized
by the Joint Directors of Laboratories (JDL) in the form of
a so-called JDL Data Fusion Model. In this model, data
fusion is divided into five levels as shown in Table 1. Note
that SAW is Level 2 data fusion in this model. The JDL
model defines SAW to be the “estimation and prediction of

relations among entities, to include force structure and
cross force relations, communications and perceptual
influences, physical context, etc.” Level 2 processing
typically “involves associating tracks (i.e., hypothesized
entities) into aggregations. The state of the aggregate is
represented as a network of relations among its elements.
We admit any variety of relations to be considered --
physical, organizational, informational, perceptual -- as
appropriate to the given need.” The table and all
quotations in this paragraph are from [1].
 Level 3 captures the functionality of the impact
assessment, i.e., the effect of actions that are, in part, the
result of the processing at the lower level. Level 4 deals
with the assignment of resources to tasks. Blasch (cf., [9])
proposed to add one more level – User Refinement – to
this model. The goal of this additional level is to make an
explicit connection between the computer processing
(fusion) of information and human-in-the-loop. The role of
the human-in-the loop was also considered in the model
proposed in Kokar et al [10].
 In our research we make use of elements of all three of
the frameworks mentioned above (i.e., Logic, HCI and
JDL), although we emphasize the terminology and point of
view of the JDL model. We favor a formal approach to the
problem, as our ultimate intent is to be able to formally
reason about situations. Towards this end we have
developed a formal definition of SAW, which provides the
basis for the rest of the work described in this paper. When
we say “formal”, we mean an approach in which
specifications are first completely expressed in the
language of logic and mathematics and then progressively
refined by some truth-preserving refinement operations
(cf., [11]), using in the process such tools as Specware [12]
and theorem provers like SNARK [13].

Definition: Situation Awareness (SAW) is knowledge of
the following:

• A specification of the Goal theory, Tg;
• An ontology, i.e. a theory TO of the world;
• A stream of measurements W1, W2… for time

instances t1, t2,…;
• At each time instance, the fused theory T���� t = ∇∇∇∇T (T1

t ,

Tt
2 ,…Tt

n) that combines all the theories that are

relevant to the Goal Tg as well as the fused theory ��������t+1
= ∇∇∇∇T (Tt+1

1 , Tt+1
2 ,…Tt+1

n) that combines all the theories

that are relevant to the Goal Tg at some time t + 1 in
the future;

• At each time instance t, the fused model ��������
t = ∇∇∇∇M

(Mt
1 .1 , Mt

1 .2,…, Mt
2 .1 , Mt

2 .2 ,…) that combines

all models relevant to the Goal Tg as well as the fused
model ��

t + 1 at some time t + 1 in the future; and,
• Relations � �� �� �� �

t ⊂ ΟΟΟΟ t × ΟΟΟΟ���� t relevant at time t, as well as
at t+1, � �� �� �� �

t+1 ⊂ ΟΟΟΟ t+1 × ΟΟΟΟ���� t+1
 among objects (here we

consider only binary relations, but the formalization
can be extended to include relations of higher arity).

 Our core SAW ontology described in the next section
effectively defines the “theory of the world”, TO. It
contains classes to support all of the formal symbols in the
definition (although not always in a 1-to-1 manner).

3 The Core SAW Ontology
 An ontology is a specification of concepts and
relationships among the concepts that can exist in a given
setting (cf., [2], [14]). Ontologies were part of the culture
in philosophy and linguistics for many years. Then the
computer science community in general, and the agents
community in particular, started using this concept as a
basis for communication among agents (cf., [14]),
Recently, ontologies began being used in the information
fusion community (cf., [15], [16], [17], [18]).
 In our development of a formal approach to reasoning
about situations (see [3]) we needed an ontology that
would satisfy several requirements. First it needed to be
able to represent objects and relationships as well as their
evolution over time. Second, we wanted it to be able to
express essentially any “reasonable” evolution of objects
and relationships (although possibly only approximately).
Third, the design needed to be economical so as to
ultimately permit its implementation in a working system.
 Figure 1 depicts the main portion of the SAW
ontology we developed to satisfy these requirement. It is
depicted as a UML diagram [19], where rectangles
represent classes and connecting lines indicate inter-class
relationships. The Situation* class (upper right corner)
defines a situation to be a collection of Goals,
SituationObjects and Relations. SituationObjects are
entities in a situation -- both physical and abstract -- that
can have characteristics (i.e., Attributes) and can
participate in relationships. Attributes define values of
specific object characteristics, such as weight or color. A
PhysicalObject is a special type of SituationObject that
necessarily has the attributes of Volume, Position and
Velocity. Relations define the relationships between
ordered sets of SituationObjects. For example,
inRangeOf(X,Y) might be a Relation representing the
circumstance when one PhysicalObject, X, is within firing
range of a second PhysicalObject, Y.

* We use the convention of capitalizing and italicizing
names that refer to classes in the ontology. When we are
defining a class we will also make it bold.

Figure 1. Core SAW Ontology

 An important aspect of Attributes and Relations is that
they need to be associated with values that can change over
time. To accomplish this Attributes/Relations are
associated with zero or more PropertyValues each of
which defines two time dependant functions, one for the
actual value and the other for the certainty assigned to that
value. A new PropertyValue is created for an
Attribute/Relation whenever an EventNotice arrives that
“affects” that Attribute/Relation. The value of an
Attribute/Relation at a particular point in time (either
current, past or future) can be determined by accessing the
value function of the PropertyValue instance that is in
effect at the prescribed time. This is illustrated in the
diagram in Figure 2, but before explaining the illustration
we need to introduce the EventNotice class.
 It is now that we need to introduce the notion of
EventNotices. EventNotices contain information about
events in the real-world situation observed by a sensory
source at a specific time that affects a specific Relation or
Attribute (of a specific SituationObject) by defining or
constraining its PropertyValue. These are the entities that
indicate change in the situation and thus are the vehicles by
which changes are affected in the Attributes and Relations
of the situation representation.

Figure 2. PropertyValues delineated by EventNotices

 Consider now the example depicted in Figure 2. Some
event happens at time t1 resulting in the generation of
eventnotice-t1 by some sensor. This EventNotice affects
attrbute1 or object1 by assigning it a value and certainty
instantiated as propertyvalue1. At time t2 a second event
occurs generating eventnotice2 in turn affects attribute1,
this case by assigning it a new value and certainty in the
form of propertyvalue2. eventnotice2 also becomes
associated with propertyvalue1 as it effectively marks the
end of propertyvalue1’s period of being in effect. A
similar process occurs with the onset of the third event at
time t3.
 The ontology permits an PropertyValue to be
implemented as as a model of a DynamicSystem that
provides a value function parameterized over time; this
feature becomes important when a system needs to be able
to predict the evolution of PropertyValues into the future
(see discussion below). Similarly, the certainty of a
PropertyValue can be dynamically modeled in the
DynamicSystem. For example, the certainty of a value
might decay as time goes on in the absence of new
observations that affect it.
 To illustrate the need for a DynamicSystem
implementation of PropertyValues, consider the Position
attribute of a PhysicalObject. The Position attribute is
interesting in that its value for an object at time t+1 is
related to the Velocity (a vector providing speed and
direction) of that object at time t. Even if no new
EventNotice affecting the position is received at time t+1,
it is reasonable to assume that the object’s position has
changed. In the absence of additional information (e.g.,
acceleration, trajectory) it might be reasonable to assume
that the object continues to move at its last noted speed
and direction until informed otherwise, all be it with
increasing uncertainty as time goes on. To be able to make
such projections in the absence of explicit sensory
information requires predictive models. It is for this
reason that the SAW ontology shows DynamicSystems as a
way of implementing PropertyValues. Certain attributes,
such as Position, would be modeled by dynamic systems
that might themselves generate internal EventNotices to
update the attribute values, with some lesser degree of
certainty, until new external sensory information arrives.
It might also become desirable to fuse multiple model-
predicted values or to combine model-generated values
with sensory information in cases where the certainty of
the external information is less than perfect.

3.1 Alternative Designs
 We now discuss some alternative design approaches
considered in the development of our SAW ontology. All
of these are concerned in some way with the issue of
representing relations and attributes that evolve over time.
This issue proved to be the most challenging, in part
because of the various ways it can be approached, and in

part because of the critical role it must play in a real-world
SAW solutions, thus necessitating a solid design.
 The first design considered involves what we call a
“snapshot” approach because, like a photo snapshot, the
entire state of all relations and attributes are captured at a
particular instant in time. As shown in Figure 3 the
Snapshot class has a time property which must be assigned
a unique value corresponding to the time the snapshot was
taken. Each Snapshot contains an aggregation of
AttributeValues (one for each Attribute in the current
situation state) and Relations (one for each relation that
holds to be true at the time of the snapshot).

Figure 3. Shapshot Design Alternative

 One advantage of this approach is that it is very easy to
determine the exact values and relations that hold at any
point in time for which a snapshot was taken. The
disadvantage is that if a value or relation doesn’t change
between snapshots you still need to consume the resources
necessary to represent the redundant information. For
anything but trivially small situation this approach
becomes prohibitively expensive for a practical, (near)
real-time system. Furthermore, this approach assumes
your sensory information comes to you in a lock-step
fashion such that all information from all sensors is
updated at the same time. This is unlikely to be true in the
real world particularly if your sensory information comes
from a combination of electro-mechanical sensors and
human observers.
 Clearly it would be advantageous for it to be possible
for sensory information to be updated at a rate that is
appropriate for the sensory source and the sensed target.
For example, information received about a jet fighter’s
position from a electronic radar system might need to be
recorded in micro-second time intervals, whereas the
location of a minefield reported by human observers
certainly requires far, far less frequent updating. We
therefore want to be able to represent attribute values and
relations in such a way they can be updated as frequently
or infrequently as necessary. The way we originally
proposed doing this is by defining a TimeInterval class that
captures the start and end times over which an attribute
value or relation holds. In this approach, shown in Figure
4, Attribute Values and Relations are shown to be
associated with aggregations of TimeIntervals. In the case
of Relations, these TimeIntervals demark the periods of
time for which a relation holds true. For Attribute Values

they indicate the time periods for which an attribute’s
Value has a specific value. This approach achieves the
effect we were looking for of being able to capture
changing values/relations at arbitrary rates and without
redundancy. We will tweak it a bit later but first let’s will
consider another real-world concern.

Figure 4. TimeInterval-based Values and Relations

 In real-world situations sensory information is not
always accurate. To account for this there needs to be a
way to represent the certainty/uncertainty inherent in
sensory data; this becomes particularly important if the
system using the data intends to perform data fusion or
higher-order reasoning, as is the case for our solutions. It
seems natural to associate certainty/uncertainty with the
Values of an Attribute, but where should this information
go when representing Relations? Such information does
not logically belong with the TimeInterval of the Relation
but if we associate it with the Relation itself then the level
of certainty/uncertainty is separate from any notion of time
and thus must be constant, which clearly isn’t accurate.
We remedy this problem by changing the AttributeValue
class into a PropertyValue that can also be used by
Relations. In this way Relations are associated with
aggregations of PropertyValues rather than of
TimeIntervals, as shown in Figure 6. Now we can add
certainty to the PropertyValue class and have it work for
both Attribute and Relations in the same way. Note that
we are not making any claims here about the form of the
certainty values that need be used. In our work we have
thus far used fuzzy logic to represent certainty and have
plans to implement probabilistic and Dempster-Shafer
models as well.

Figure 6. PropertyValues with Certainty

Figure 7. EventNotices as TimeInterval Markers

 The final design consideration brings us back to the
issue of demarking the beginnings and ends of
PropertyValues. In the real world, events† happen which
cause (level 1) sensors to transmit new information; we
call these notifications of new sensor information event
notices. Since the onset of these events delineate the times
when new values are taken on by attributes and relations it
makes sense to use them as the basis for the time intervals

† We would like to thank John Salerno of AFRL for the
original suggestion to consider the implication of events.

of PropertyValues, thereby eliminating the TimeInterval
class completely. In the design shown in EventNotices are
used to mark the start and end times of PropertyValues, as
was described with an example Section 2 using Figure 2.

4 Domain-specific Extensions
 The core SAW ontology was designed to be readily
extended to support domain specific needs. In this section
we present a simple Battlefield scenario and show how the
SAW ontology was extended by sub-classing a small
number of core classes.

4.1 Battlefield Scenario
 The Battlefield scenario used in our example consists of
two simple snapshots of events describing the initial
interaction between two opposing tank platoons (see
Figure 9 and Figure 10). In the first snapshot we observe a
collection of three stationary blue tanks (tank1, tank2, and
tank3), an observation post and a minefield. In the next
snapshot (Figure 10), two red tanks (tank4 and tank5)
appear approaching from the west and the three blue tanks
begin advancing towards them.

Figure 9. Battlefield Scenario Snapshot 1

Figure 10. Battlefield Scenario Snapshot 2

 To satisfactorily represent the objects in the scenario it
was necessary to extend the PhysicalObject class to
accommodate various military units (see Figure 11) and
battlefield obstacles (see Figure 12) (note these are not
intended to be complete). The battlefield ontology also
creates subclasses of the SituationObject to define the
abstract notions of doctrines and factions.

Figure 11. Battlefield Ontology – Military Units

Figure 12. Battlefield Ontology - Obstacles

Figure 13. Battlefield Ontology – Relations

 In addition, sub-classes of Relations specific to the
battlefield were added as shown in Figure 13 (again, this is
not intended to be a complete list of relevant relations).
These Relations are important in our system (see [3])
because the intent of our system is to reason about level 1

events in order to determine which level 2 Relations are in
effect at any given moment.
 To complete the ontology for a specific implementation
it is also necessary to define subclasses for the Attributes
of PhysicalObjects in order to define how they would be
represented in the system. For example, Position might be
defined to be a two-dimensional vector for a situation
where elevation is not a factor.
4.2 An Instance Annotation
 We now provide an example of how the ontology can
be used to create an “instance annotation” of a specific
situation using DAML. This example illustrates a partial
state of the situation shown in Snapshot 2 (Figure 10).
Specifically it shows the values of the Position attribute for
tank1 along with one of the EventNotices that affected the
latest value.

<?xml version="1.0"?>
<rdf:RDF . . .>

<saw:PhysicalObject rdf:ID="Tank1">
 <saw:attribute>
 <saw:Position>
 <saw:PropertyValue>
 <saw:PropertyValue>
 <saw:startEvent
 rdf:datatype="xsd:IDREF">
 E1
 </saw:startEvent>
 <saw:endEvent
 rdf:datatype="xsd:IDREF">
 E6
 </saw:startEvent>
 <saw:value rdf:datatype="saw:Vector">
 20,-40
 </saw:value>
 <saw:certainty
 rdf:datatype="xsd:float">
 1.0
 </saw:certainty>
 </saw:PropertyValue>
 </saw:PropertyValue>
 <saw:PropertyValue>
 <saw:PropertyValue>
 <saw:startEvent
 rdf:datatype="xsd:IDREF">
 E6
 </saw:startEvent>
 <saw:value rdf:datatype="saw:Vector">
 70,-40
 </saw:value>
 <saw:certainty
 rdf:datatype="xsd:float">
 1.0
 </saw:certainty>
 </saw:PropertyValue>
 </saw:attributeValuse>
 </saw:Position>
 </saw:attribute>
 ... more attributes ...
</saw:PhysicalObject>

 ... more PhysicalObjects ...

<saw:EventNotice rdf:ID="E6">

 <saw:time rdf:datatype="xsd:dateTime">
 12:10
 </saw:time>
 <saw:eventSource rdf:datatype="xsd:IDREF">
 Sensor1
 </saw:eventSource>
</saw :EventNotice>

 ... more EventNotices ...

</rdf:RDF>

 Tank1 is a PhysicalObject with a number of attributes
including its Position. This Position attribute is shown in
the markup to have two values that are instantiated as
PropertyValue instances. The first PropertyValue instance
shows tank1’s position from the time of EventNotice E1
until the time of EventNotice E6 to have been the vector
coordinates of “20,-40” with certainty of 1.0. The second
PropertyValue shows the new Position of Tank1 reported
by EventNotice E6, which will stay in affect until another,
EventNotice occurs that changes it (note the absence of a
endEvent value in this PropertyValue).

5 Conclusions
 One of the main objectives of our research in the area
of ontologies and information fusion is to develop an
approach to situation awareness in which a situation
awareness system is flexible enough to accommodate
various scenarios of the interaction with the end user.
More specifically, the goal is to allow the end user of a
SAW system to formulate queries regarding current, and
possibly future, situations using an expressive query
language. The SAW system then needs to maintain all the
necessary information in a well organized fashion to make
the answering of the quries possible and efficient. Towards
this goal we defined a core ontology. In this paper we
showed some design considerations of such an ontology.
Our objective was to show that the design decisions we
made regarding our core SAW ontology are well justified
and rational. In particular, we showed four possible design
choices along with advatages and shortcomings of each.

Acknowledgements
 This research was partially supported by AFRL/IF
under an SBIR Phase I contract, number F30602-02-C-
0039. We would also like to thank Mike Hinman and John
Salerno for their helpful suggestions and feedback.

References

[1] A. Steinberg, C. Bowman, and F. White, “Revisions to
the JDL data fusion model”, In Proceedings of SPIE
Conf. Sensor Fusion: Architectures, Algorithms and
Applications III, volume 3719, pages 430-441, April 1999.

[2] Guarino, N., Formal Ontology in Information Systems,
Guarino, N. (Ed.), Proc. of Formal Ontology in
Information Systems, IOS Press, pages 3-15, June 1998.

[3] C. J. Matheus, K. Baclawski and M. M. Kokar,
Derivation of ontological relations using formal methods
in a situation awareness scenario, In Proceedings of SPIE
Conference on Mulitsensor, Multisource Information
Fusion, pages 298-309, April 2003.

[4] L. von Mises, Human Action: A Treatise on
Economics, originally published in 1949, Fox & Wilkes,
1997.

[5] M. Bunge, Treatise on basic philosophy. III: Ontology:
The furniture of the world, Reidel, Dordrecht, 1977.

[6] J. Barwise, “Scenes and other situations”, J.
Philosophy 77, 369-397, 1981.

[7] J. Barwise, The Situation In Logic, CSLI Lecture Notes
17, 1989.

[8] M. Endsley and D. Garland, Situation Awareness,
Analysis and Measurement, Lawrence Erlbaum
Associates, Publishers, Mahway, New Jersey, 2000.

[9] Blasch, E. P. and Plano, S. “Level 5: User Refinement
to aid the Fusion Process”, In Proceedings of SPIE
Conference on Mulitsensor, Multisource Information
Fusion, pages 288- 297, April 2003.

[10] M. M. Kokar, M. D. Bedworth, and K. B. Frankel. A
reference model for data fusion systems. In Proceedings of
SPIE Conference on Sensor Fusion: Architectures,
Algorithms, and Applications IV, pages 191-202, July
2000.

[11] Formal methods specification and verification
guidebook for software and computer systems. Technical
Report NASA-GB-002-95, National Aeronautics and
Space Administration, 1995.

[12] Specware: Language manual, version 2.0.3. Technical
report, Kestrel Institute, 1998.

[13] SNARK: SRI’s new automated reasoning kit,
2002. http://www.ai.sri.com/ stickel/snark.html.

[14] D. McGuinness. Ontologies and online commerce.
IEEE Intelligent Systems, 16(1):8—14, 2001.

[15] A. C. Boury-Brisset. Towards a knowledge server to
support the situation analysis process. In Proceedings of
Fusion 2001, 4-th International Conference on Information
Fusion, August 2001.

[16] D. A. Lambert. Situations for situation awareness. In
Proceedings of Fusion 2001, 4-th International Conference
on Information Fusion, August 2001.

[17] J. Roy. From data fusion to situation awareness. In
Proceedings of Fusion 2001, 4-th International Conference
on Information Fusion, August 2001.

[18] M. M. Kokar and J. Wang. An example of using
ontologies and symbolic information in automatic
target recognition. In Proceedings of SPIE Conference on
Sensor Fusion: Architectures, Algorithms, and
Applications VI, pages 40-50. April 2002.

[19] G. Booch ,I. Jacobsen, and J. Rumbaugh.
OMG Unified Modeling Language Specification, March
2000.

