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Abstract - In this paper we present an ontology for 
situation awareness. One of our goals is to support the 
claim that this ontology is a reasonable candidate for 
representing various scenarios of situation awareness. 
Towards this aim we provide an explanation of the 
meaning of this ontology, show its expressiveness and 
demonstrate its extensibility.  We also compare the 
expressiveness of this ontology with alternative 
approaches we considered during the design of the 
ontology.  We then show how the ontology can be adapted 
to handle domain-specific situations by readily extending 
the core language. The extensions include adding 
subclasses, sub-properties and additional attributes to the 
core ontology. We conclude with an example of how the 
ontology can be used to annotate specific instances of a 
situation.  

Keywords: Situation awareness, ontology, formal method, 
information fusion, relation derivation, events. 

1 Introduction 
     Maintaining a coherent situation awareness (SAW) 
concerning all units operating in a region of interest (e.g., 
battlefield environment, emergency disaster scene, 
counter-terrorism event) is essential for achieving 
successful resolution of an evolving situation. The process 
of achieving SAW is called situation analysis.   The 
primary basis for SAW is knowledge of the objects within 
the region of interest, typically provided by “sensors” 
(both mechanical and human) that perform object 
identification and characterization -- in military parlance 
these are known as level 1 sensors [1].  Although 
knowledge of the individual objects and their current 
attributes is essential, this does not by itself constitute 
complete “awareness” – SAW also requires knowing the 
relations among the objects that are relevant to the current 
operation. For example, simply knowing that there is a 
friendly tank and an enemy tank on the battlefield may not 
be as important as knowing that the enemy tank is “in 
firing range” of the friendly tank.  
     Systems that assist in situation analysis require the 
ability to represent objects and maintain information about 
their attributes and relationships with other objects as they 
evolve over time.  This necessitates a model (or more 
formally, a theory) of how the world of the situation 
“works” in the eyes of those doing the analysis.  Such a 

model can be partially defined by an ontology that 
describes a set of entities (concrete and/or abstract) and the 
relationships they can have with each other [2]. Clearly, 
different classes of situations will necessitate different 
ontologies so as to appropriately define the various objects 
and relations relevant to their specific domains. We have 
constructed a core ontology for SAW that provides a basis 
from which to build ontologies for arbitrary situations.  At 
the center of this model are objects, relations and events.  
The relationships between these core entities are defined 
such that a system based on this ontology will be able to 
represent and capture sufficient information about a 
situation to support high-level reasoning, which is a 
primary goal of our research [3]. 
     The development of the ontology proceeded over many 
months and involved consideration of several alternative 
approaches.  The most challenging aspects of the design 
revolved around the problem of representing values of 
attributes and relations that evolve over time and space.  In 
this paper we relate some of these issues and discuss the 
advantages and disadvantages of various alternative 
approaches. 
     In the next section we provide some general 
background information on SAW, including our formal 
definition of SAW.  This leads into a description of the 
core SAW ontology followed by a discussion of some 
important design decisions. To demonstrate how the 
ontology can be extended to specific domains we introduce 
a simple battlefield scenario and show how it can be 
accommodated through the sub-classing of a small number 
of core SAW classes.  Finally, we provide an example of 
the use of this domain-specialized ontology to describe a 
specific scenario using the DARPA Agent Markup 
Language (DAML). 
 

2 Situation Awareness 
     A number of philosophers and logicians introduced 
concepts similar to that of a situation, including von Mises 
[4] in 1949 and Bunge [5] in the 1970s. However, the 
earliest formal notion of situation (although not situation 
awareness) was introduced by Barwise as a means of 
giving a more realistic formal semantics for speech acts 
than what was then available [6]. In contrast with a 
“world” which determines the value of every proposition, a 
situation corresponds to the limited parts of reality we 
perceive, reason about, and live in.  With limited 
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information a situation can provide answers to some but 
not all questions about the world.  Furthermore, in 
situation semantics, basic properties, relations, events and 
even situations are reified (i.e., made concrete) as objects 
to be reasoned about [7]. Note that once a situation is 
made into a concrete object, various properties can be 
associated with the situation. While Barwise's situation 
semantics is only one of the many alternative semantic 
frameworks currently available, its basic themes have been 
incorporated into most others. 
     The specific term situation awareness is most 
commonly used by the Human-Computer Interaction (HCI) 
community (cf., Endsley and Garland [8]).  The concerns 
of this community are to design computer interfaces so that 
a human operator can achieve SAW in a timely fashion.  
From this point of view, SAW occurs in the mind of the 
operator.  In almost any fairly complex system, such as 
military aircraft and nuclear reactors, manual tasks are 
being replaced by automated functions.  However, human 
operators are still responsible for managing SAW.  This 
raises new kinds of problems due to human limitations in 
maintaining SAW.  The SAW literature gives many 
examples of incidents and accidents, which could have 
been avoided if operators had recognized the situation in 
time.   
     Situation awareness is also used in the data fusion 
community where it has been more commonly referred to 
as situation assessment.  Data fusion is an increasingly 
important element of diverse military and commercial 
systems.  The process of data fusion uses overlapping 
information to detect, identify and track relevant objects in 
a region.  The term “data fusion” is used because 
information originates from multiple sources.  More 
succinctly, data fusion is the process of combining data to 
refine state estimates and predictions [1]. 
 

Fusion Level 
Association 

Process Estimation Entity 
Estimation 

L.0 Sub-
Object 
Assessment 
L.1 Object 
Assessment 

Assignment Detection 
Attribution 

Signal 
Physical 
Object 

L.2 Situation 
Assessment 
L.3 Impact 
Assessment 

Aggregation 
Relation 

Plan 
Interaction 

Aggregation 
Effect 

(Situation 
given Plans) 

L.4 Process 
Refinement Planning (Control) (Action) 

Table 1 JDL’s 5 Levels of Data Fusion 

     The terminology of data fusion has been standardized 
by the Joint Directors of Laboratories (JDL) in the form of 
a so-called JDL Data Fusion Model.  In this model, data 
fusion is divided into five levels as shown in Table 1. Note 
that SAW is Level 2 data fusion in this model.  The JDL 
model defines SAW to be the “estimation and prediction of 

relations among entities, to include force structure and 
cross force relations, communications and perceptual 
influences, physical context, etc.”  Level 2 processing 
typically “involves associating tracks (i.e., hypothesized 
entities) into aggregations.  The state of the aggregate is 
represented as a network of relations among its elements.  
We admit any variety of relations to be considered -- 
physical, organizational, informational, perceptual -- as 
appropriate to the given need.” The table and all 
quotations in this paragraph are from [1]. 
   Level 3 captures the functionality of the impact 
assessment, i.e., the effect of actions that are, in part, the 
result of the processing at the lower level. Level 4 deals 
with the assignment of resources to tasks. Blasch (cf., [9]) 
proposed to add one more level – User Refinement – to 
this model. The goal of this additional level is to make an 
explicit connection between the computer processing 
(fusion) of information and human-in-the-loop. The role of 
the human-in-the loop was also considered in the model 
proposed in Kokar et al [10]. 
     In our research we make use of elements of all three of 
the frameworks mentioned above (i.e., Logic, HCI and 
JDL), although we emphasize the terminology and point of 
view of the JDL model. We favor a formal approach to the 
problem, as our ultimate intent is to be able to formally 
reason about situations.  Towards this end we have 
developed a formal definition of SAW, which provides the 
basis for the rest of the work described in this paper. When 
we say “formal”, we mean an approach in which 
specifications are first completely expressed in the 
language of logic and mathematics and then progressively 
refined by some truth-preserving refinement operations 
(cf., [11]), using in the process such tools as Specware [12] 
and theorem provers like SNARK [13]. 
 
Definition: Situation Awareness (SAW) is knowledge of 
the following: 

• A specification of the Goal theory, Tg; 
• An ontology, i.e. a theory TO  of the world; 
• A stream of measurements W1, W2… for time 

instances t1, t2,…; 
• At each time instance, the fused theory T���� t  =  ∇∇∇∇T (T1

t , 

Tt
2 ,…Tt

n) that combines all the theories that are 

relevant to the Goal Tg as well as the fused theory ��������t+1  
= ∇∇∇∇T (Tt+1

1 , Tt+1
2 ,…Tt+1

n ) that combines all the theories 

that are relevant to the Goal Tg  at some time t + 1 in 
the future; 

• At each time instance t, the fused model ��������
t  = ∇∇∇∇M 

(Mt
1 .1 , Mt

1 .2,…, Mt
2 .1 , Mt

2 .2 ,…) that combines 

all models relevant to the Goal Tg as well as the fused 
model ��

t + 1 at  some time t + 1 in the future; and,  
• Relations � �� �� �� �

t ⊂ ΟΟΟΟ t × ΟΟΟΟ���� t relevant at time t, as well as 
at t+1, � �� �� �� �

t+1 ⊂ ΟΟΟΟ t+1 × ΟΟΟΟ���� t+1
 among objects (here we 



consider only binary relations, but the formalization 
can be extended to include relations of higher arity). 

 
     Our core SAW ontology described in the next section 
effectively defines the “theory of the world”, TO.  It 
contains classes to support all of the formal symbols in the 
definition (although not always in a 1-to-1 manner).  
 

3 The Core SAW Ontology 
     An ontology is a specification of concepts and 
relationships among the concepts that can exist in a given 
setting (cf., [2], [14]).  Ontologies were part of the culture 
in philosophy and linguistics for many years. Then the 
computer science community in general, and the agents 
community in particular, started using this concept as a 
basis for communication among agents (cf., [14]), 
Recently, ontologies began being used in the information 
fusion community (cf., [15], [16], [17], [18]).  
     In our development of a formal approach to reasoning 
about situations (see [3]) we needed an ontology that 
would satisfy several requirements.  First it needed to be 
able to represent objects and relationships as well as their 
evolution over time.  Second, we wanted it to be able to 
express essentially any “reasonable” evolution of objects 
and relationships (although possibly only approximately). 
Third, the design needed to be economical so as to 
ultimately permit its implementation in a working system.  
       Figure 1 depicts the main portion of the SAW 
ontology we developed to satisfy these requirement.  It is 
depicted as a UML diagram [19], where rectangles 
represent classes and connecting lines indicate inter-class 
relationships.  The Situation* class (upper right corner) 
defines a situation to be a collection of Goals, 
SituationObjects and Relations.  SituationObjects are 
entities in a situation -- both physical and abstract -- that 
can have characteristics (i.e., Attributes) and can 
participate in relationships. Attributes define values of 
specific object characteristics, such as weight or color. A 
PhysicalObject is a special type of SituationObject that 
necessarily has the attributes of Volume, Position and 
Velocity. Relations define the relationships between 
ordered sets of SituationObjects.  For example, 
inRangeOf(X,Y) might be a Relation representing the 
circumstance when one PhysicalObject, X, is within firing 
range of a second PhysicalObject, Y.  
 

                                                 
* We use the convention of capitalizing and italicizing 
names that refer to classes in the ontology. When we are 
defining a class we will also make it bold. 
 

 

Figure 1.  Core SAW Ontology 

     An important aspect of Attributes and Relations is that 
they need to be associated with values that can change over 
time. To accomplish this Attributes/Relations are 
associated with zero or more PropertyValues each of 
which defines two time dependant functions, one for the 
actual value and the other for the certainty assigned to that 
value.  A new PropertyValue is created for an 
Attribute/Relation whenever an EventNotice arrives that 
“affects” that Attribute/Relation.  The value of an 
Attribute/Relation at a particular point in time (either 
current, past or future) can be determined by accessing the 
value function of the PropertyValue instance that is in 
effect at the prescribed time.  This is illustrated in the 
diagram in Figure 2, but before explaining the illustration 
we need to introduce the EventNotice class. 
     It is now that we need to introduce the notion of 
EventNotices. EventNotices contain information about 
events in the real-world situation observed by a sensory 
source at a specific time that affects a specific Relation or 
Attribute (of a specific SituationObject) by defining or 
constraining its PropertyValue. These are the entities that 
indicate change in the situation and thus are the vehicles by 
which changes are affected in the Attributes and Relations 
of the situation representation. 
 

 

Figure 2. PropertyValues delineated by EventNotices 

 



     Consider now the example depicted in Figure 2.  Some 
event happens at time t1 resulting in the generation of 
eventnotice-t1 by some sensor.  This EventNotice affects 
attrbute1 or object1 by assigning it a value and certainty 
instantiated as propertyvalue1.  At time t2 a second event 
occurs generating eventnotice2 in turn affects attribute1, 
this case by assigning it a new value and certainty in the 
form of propertyvalue2.  eventnotice2 also becomes 
associated with propertyvalue1 as it effectively marks the 
end of propertyvalue1’s period of being in effect.  A 
similar process occurs with the onset of the third event at 
time t3. 
     The ontology permits an PropertyValue to be 
implemented as as a model of a DynamicSystem that 
provides a value function parameterized over time; this 
feature becomes important when a system needs to be able 
to predict the evolution of PropertyValues into the future 
(see discussion below). Similarly, the certainty of a 
PropertyValue can be dynamically modeled in the 
DynamicSystem. For example, the certainty of a value 
might decay as time goes on in the absence of new 
observations that affect it. 
     To illustrate the need for a DynamicSystem 
implementation of PropertyValues, consider the Position 
attribute of a PhysicalObject.  The Position attribute is 
interesting in that its value for an object at time t+1 is 
related to the Velocity (a vector providing speed and 
direction) of that object at time t.  Even if no new 
EventNotice affecting the position is received at time t+1, 
it is reasonable to assume that the object’s position has 
changed.  In the absence of additional information (e.g., 
acceleration, trajectory) it might be reasonable to assume 
that the object continues to move at its last noted speed 
and direction until informed otherwise, all be it with 
increasing uncertainty as time goes on.  To be able to make 
such projections in the absence of explicit sensory 
information requires predictive models.  It is for this 
reason that the SAW ontology shows DynamicSystems as a 
way of implementing PropertyValues.  Certain attributes, 
such as Position, would be modeled by dynamic systems 
that might themselves generate internal EventNotices to 
update the attribute values, with some lesser degree of 
certainty, until new external sensory information arrives.  
It might also become desirable to fuse multiple model-
predicted values or to combine model-generated values 
with sensory information in cases where the certainty of 
the external information is less than perfect. 
 

3.1 Alternative Designs 
     We now discuss some alternative design approaches 
considered in the development of our SAW ontology.  All 
of these are concerned in some way with the issue of 
representing relations and attributes that evolve over time.  
This issue proved to be the most challenging, in part 
because of the various ways it can be approached, and in 

part because of the critical role it must play in a real-world 
SAW solutions, thus necessitating a solid design. 
      The first design considered involves what we call a 
“snapshot” approach because, like a photo snapshot, the 
entire state of all relations and attributes are captured at a 
particular instant in time.  As shown in Figure 3 the 
Snapshot class has a time property which must be assigned 
a unique value corresponding to the time the snapshot was 
taken.  Each Snapshot contains an aggregation of 
AttributeValues (one for each Attribute in the current 
situation state) and Relations (one for each relation that 
holds to be true at the time of the snapshot). 
 

 

Figure 3. Shapshot Design Alternative 

     One advantage of this approach is that it is very easy to 
determine the exact values and relations that hold at any 
point in time for which a snapshot was taken.  The 
disadvantage is that if a value or relation doesn’t change 
between snapshots you still need to consume the resources 
necessary to represent the redundant information.  For 
anything but trivially small situation this approach 
becomes prohibitively expensive for a practical, (near) 
real-time system.  Furthermore, this approach assumes 
your sensory information comes to you in a lock-step 
fashion such that all information from all sensors is 
updated at the same time.  This is unlikely to be true in the 
real world particularly if your sensory information comes 
from a combination of electro-mechanical sensors and 
human observers.  
     Clearly it would be advantageous for it to be possible 
for sensory information to be updated at a rate that is 
appropriate for the sensory source and the sensed target.  
For example, information received about a jet fighter’s 
position from a electronic radar system might need to be 
recorded in micro-second time intervals, whereas the 
location of a minefield reported by human observers 
certainly requires far, far less frequent updating.  We 
therefore want to be able to represent attribute values and 
relations in such a way they can be updated as frequently 
or infrequently as necessary.  The way we originally 
proposed doing this is by defining a TimeInterval class that 
captures the start and end times over which an attribute 
value or relation holds.  In this approach, shown in Figure 
4, Attribute Values and Relations are shown to be 
associated with aggregations of TimeIntervals.  In the case 
of Relations, these TimeIntervals demark the periods of 
time for which a relation holds true.  For Attribute Values 



they indicate the time periods for which an attribute’s 
Value has a specific value.   This approach achieves the 
effect we were looking for of being able to capture 
changing values/relations at arbitrary rates and without 
redundancy.  We will tweak it a bit later but first let’s will 
consider another real-world concern.  
 

 

Figure 4. TimeInterval-based Values and Relations 

     In real-world situations sensory information is not 
always accurate.  To account for this there needs to be a 
way to represent the certainty/uncertainty inherent in 
sensory data; this becomes particularly important if the 
system using the data intends to perform data fusion or 
higher-order reasoning, as is the case for our solutions.  It 
seems natural to associate certainty/uncertainty with the 
Values of an Attribute, but where should this information 
go when representing Relations?  Such information does 
not logically belong with the TimeInterval of the Relation 
but if we associate it with the Relation itself then the level 
of certainty/uncertainty is separate from any notion of time 
and thus must be constant, which clearly isn’t accurate.  
We remedy this problem by changing the AttributeValue 
class into a PropertyValue that can also be used by 
Relations. In this way Relations are associated with 
aggregations of PropertyValues rather than of 
TimeIntervals, as shown in Figure 6.  Now we can add 
certainty to the PropertyValue class and have it work for 
both Attribute and Relations in the same way.  Note that 
we are not making any claims here about the form of the 
certainty values that need be used.  In our work we have 
thus far used fuzzy logic to represent certainty and have 
plans to implement probabilistic and Dempster-Shafer 
models as well. 

 
Figure 6.  PropertyValues with Certainty 

 

 
Figure 7.  EventNotices as TimeInterval Markers 

     The final design consideration brings us back to the 
issue of demarking the beginnings and ends  of 
PropertyValues.  In the real world, events† happen which 
cause (level 1) sensors to transmit new information; we 
call these notifications of new sensor information event 
notices.  Since the onset of these events delineate the times 
when new values are taken on by attributes and relations it 
makes sense to use them as the basis for the time intervals 

                                                 
† We would like to thank John Salerno of AFRL for the 
original suggestion to consider the implication of events. 



of PropertyValues, thereby eliminating the TimeInterval 
class completely.  In the design shown in  EventNotices are 
used to mark the start and end times of PropertyValues, as 
was described with an example Section 2 using Figure 2. 
 

4 Domain-specific Extensions 
     The core SAW ontology was designed to be readily 
extended to support domain specific needs.  In this section 
we present a simple Battlefield scenario and show how the 
SAW ontology was extended by sub-classing a small 
number of core classes. 
 

4.1 Battlefield Scenario 
     The Battlefield scenario used in our example consists of 
two simple snapshots of events describing the initial 
interaction between two opposing tank platoons (see 
Figure 9 and Figure 10).  In the first snapshot we observe a 
collection of three stationary blue tanks (tank1, tank2, and 
tank3), an observation post and a minefield. In the next 
snapshot (Figure 10), two red tanks (tank4 and tank5) 
appear approaching from the west and the three blue tanks 
begin advancing towards them. 
 

 

Figure 9. Battlefield Scenario Snapshot 1 

 

 

Figure 10. Battlefield Scenario Snapshot 2 

 
     To satisfactorily represent the objects in the scenario it 
was necessary to extend the PhysicalObject class to 
accommodate various military units (see Figure 11) and 
battlefield obstacles (see Figure 12) (note these are not 
intended to be complete).  The battlefield ontology also 
creates subclasses of the SituationObject to define the 
abstract notions of doctrines and factions. 
 

 

 
 

Figure 11. Battlefield Ontology – Military Units 

 
Figure 12.  Battlefield Ontology - Obstacles 

 
 

 
Figure 13.  Battlefield Ontology – Relations 

     In addition, sub-classes of Relations specific to the 
battlefield were added as shown in Figure 13 (again, this is 
not intended to be a complete list of relevant relations).  
These Relations are important in our system (see [3]) 
because the intent of our system is to reason about level 1 



events in order to determine which level 2 Relations are in 
effect at any given moment. 
     To complete the ontology for a specific implementation 
it is also necessary to define subclasses for the Attributes 
of PhysicalObjects in order to define how they would be 
represented in the system.  For example, Position might be 
defined to be a two-dimensional vector for a situation 
where elevation is not a factor. 
4.2 An Instance Annotation 
     We now provide an example of how the ontology can 
be used to create an “instance annotation” of a specific 
situation using DAML.  This example illustrates a partial 
state of the situation shown in Snapshot 2 (Figure 10).  
Specifically it shows the values of the Position attribute for 
tank1 along with one of the EventNotices that affected the 
latest value. 
 
<?xml version="1.0"?> 
<rdf:RDF . . .>  
  
<saw:PhysicalObject rdf:ID="Tank1"> 
 <saw:attribute> 
  <saw:Position> 
   <saw:PropertyValue> 
    <saw:PropertyValue> 
     <saw:startEvent 
       rdf:datatype="xsd:IDREF"> 
      E1 
     </saw:startEvent> 
     <saw:endEvent  
       rdf:datatype="xsd:IDREF"> 
      E6 
     </saw:startEvent> 
     <saw:value rdf:datatype="saw:Vector"> 
      20,-40 
     </saw:value> 
     <saw:certainty  
       rdf:datatype="xsd:float"> 
      1.0 
     </saw:certainty> 
    </saw:PropertyValue> 
   </saw:PropertyValue> 
   <saw:PropertyValue> 
    <saw:PropertyValue> 
     <saw:startEvent  
       rdf:datatype="xsd:IDREF"> 
      E6 
     </saw:startEvent> 
     <saw:value rdf:datatype="saw:Vector"> 
      70,-40 
     </saw:value> 
     <saw:certainty 
       rdf:datatype="xsd:float">      
      1.0 
     </saw:certainty> 
    </saw:PropertyValue> 
   </saw:attributeValuse> 
  </saw:Position> 
 </saw:attribute>  
      ... more attributes ... 
</saw:PhysicalObject> 
  
  ... more PhysicalObjects ... 
 
<saw:EventNotice rdf:ID="E6"> 

 <saw:time rdf:datatype="xsd:dateTime"> 
  12:10 
 </saw:time> 
 <saw:eventSource rdf:datatype="xsd:IDREF"> 
  Sensor1 
  </saw:eventSource> 
</saw :EventNotice> 
 
      ... more EventNotices ... 
  
</rdf:RDF> 
 
     Tank1 is a PhysicalObject with a number of attributes 
including its Position.  This Position attribute is shown in 
the markup to have two values that are instantiated as 
PropertyValue instances.  The first PropertyValue instance 
shows tank1’s position from the time of EventNotice E1 
until the time of EventNotice E6 to have been the vector 
coordinates of “20,-40” with certainty of 1.0.  The second 
PropertyValue shows the new Position of Tank1 reported 
by EventNotice E6, which will stay in affect until another, 
EventNotice occurs that changes it (note the absence of a 
endEvent value in this PropertyValue). 
      
5 Conclusions 
     One of the main objectives of our research in the area 
of ontologies and information fusion is to develop an 
approach to situation awareness in which a situation 
awareness system is flexible enough to accommodate 
various scenarios of the interaction with the end user. 
More specifically, the goal is to allow the end user of a 
SAW system to formulate queries regarding current, and 
possibly future, situations using an expressive query 
language. The SAW system then needs to maintain all the 
necessary information in a well organized fashion to make 
the answering of the quries possible and efficient. Towards 
this goal we defined a core ontology. In this paper we 
showed some design considerations of such an ontology. 
Our objective was to show that the design decisions we 
made regarding our core SAW ontology are well justified 
and rational. In particular, we showed four possible design 
choices along with advatages and shortcomings of each. 
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