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Abstract

Ontologies are emerging as an important tool for dealing with very large, complex
and diverse sources of information. It has also been recognized for some time that
ontologies are advantageous for software development. Lyee is a successful software
methodology due, in part, because of its incorporation of ontological notions. How-
ever, given that ontologies are themselves a form of software, it is important that
appropriate attention be paid to developing them. In particular, ontologies must
be consistent, provide sufficient coverage of the target domain and be developed at
the appropriate level of detail. While there are many ontology development tools,
there are very few ontology development methodologies, and those that have been
proposed do not address these issues adequately. This is part of a general tendency
in computer science to develop programs without designs or even requirements. Be-
cause ontologies are closely related to modern object-oriented software design, it is
natural to adapt existing object-oriented software development methodologies for the
task of ontology development. In this paper, ontology development is compared with
software development in general, and with Lyee software development in particular.
While a number of features of object-oriented software development methodologies
are especially well suited to ontology development, it is also the case that they some-
times conflict with modern ontology languages. However, these conflicts can be
reconciled, and the conclusion is that object-oriented software development method-
ologies such as Lyee show promise as a basis for ontology development methodologies.
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1 Introduction

Ontologies are emerging as an important tool for dealing with some of the most important
issues facing information processing:

e Ever larger amounts of data are available at much faster rates.
e Data structures are increasing in their complexity.
e Much more diverse sources of information are becoming relevant to each activity.

These trends have also increased interest in automating many activities that were tradi-
tionally performed manually. Web-enabled agents represent one technology for addressing
this need [40]. These agents can reason about knowledge and can dynamically integrate
services at run-time. Formal ontologies are the basis for such agents. In addition, it has
been recognized for some time that ontologies are advantageous specifically for software
development. One of the papers in the previous workshop in this series addressed this
issue [51].

Given the large amount of interest in ontologies, it is surprising that ontology devel-
opment today is in such a poor state. This is partly due to the large number of logic
and ontology languages [19]. But this proliferation is just a symptom of a more serious
problem: the rush to produce tools and languages without any clear purpose. Rather than
tools being constructed to support methodologies and process models, the methodologies
are being created for the sake of understanding how to use the tools. Because of the lack
of any generally accepted processes and methodologies, the tools exist independently and
have little support for or concern with interoperability. This is surprising since one of the
primary purposes of ontologies is to foster sharing and interoperability.

It is easy to be lured into a false sense of security by ad hoc development techniques
that work well with small ontologies. Ontologies today can be enormous. The Unified
Medical Language System (UMLS) [28] currently contains a taxonomy of over 800,000
concepts, and its taxonomy is only one feature of an ontology that is both large and
complex. Systematic development techniques, including good support for modularity and
reuse, are essential for developing ontologies of this size and complexity.

Lyee is a successful software methodology due, in part, because of its incorporation
of ontological notions. However, given that ontologies are themselves a form of software,
it is important that appropriate attention be paid to developing them. In particular,
ontologies must be consistent, accurate, provide sufficient coverage of the target domain
and be developed at the appropriate level of detail. Ontology development methodologies,
such as they are, do not address these issues adequately.

Ontologies are closely related to modern object-oriented software design, although the
analogy between the two is not perfect. Nevertheless, they share enough in common to



propose to use existing object-oriented software development methodologies for the task
of ontology development. In [8] and [9], there is a detailed comparison of the Unified
Modeling Language (UML) with the DARPA Agent Markup Language (DAML). These
papers consider issues of language and semantics, but they do not consider process and
methodology.

In this paper, ontology languages (OLs) and ontology development are compared with
object-oriented programming languages (OOPLs), object-oriented modeling languages (OOMLSs)
and software development, in general, and with Lyee software development in particular.
The conclusion is that object-oriented software development methodologies such as Lyee
show promise as a basis for ontology development methodologies.

The paper begins in Section 2 with some background material about software, ontologies
and the relationship between them. It then considers the various phases of software and
ontology development in Section 3. This is followed by three sections dealing with the major
features of ontologies. Classes are discussed in Section 4. Relationships are discussed in
Section 5. Logic is discussed in Section 6. The paper ends with some concluding remarks.

The individuals and organizations that are sponsoring the software or ontology devel-
opment are referred to by various names, such as users and customers. Neither of these are
very descriptive of the role that they play in ontology development. In this paper, these
individuals and organizations will be called the stakeholders of the development process.

2 Background

Representing knowledge is an important part of any system that purports to be knowledge-
based. In particular, all artificial intelligence systems must support some kind of knowledge
representation (KR). Expressing knowledge in machine-readable form requires that it be
represented as data. So it is not surprising that KR languages and data languages have
much in common, and both kinds of language have borrowed concepts from each other. As
is the case with data languages, most KR languages have the ability to express schemata
that define the structure and constraints of data (instances or objects) conforming to the
schema. A schema in a KR language is called an ontology [25] [26] [41] [46]. KR lan-
guages in general, and ontologies in particular, were derived from corresponding notions
in Philosophy. See the classical work by Bunge [15] [16] as well as more recent work by
Wand [63], and by Guarino, Uschold and their colleagues [24] [60]. Ontologies are funda-
mental for communication between individuals in a community. They make it possible for
individuals to share information in a meaningful way. Formal ontologies adapt this idea to
automated entities (such as programs, agents or databases). Formal ontologies are useful
even for people, because informal and implicit assumptions often result in misunderstand-
ings. Furthermore, “meaningful names” do not, in themselves, convey meaning because
their meaning may be substantially different for different members of the community. The



relationships between concepts must also be explicit. As stated by Wittgenstein (Proposi-
tion 3.3 in [66]), “Only the proposition has sense; only in the context of a proposition has
a name meaning.” Sharing of information between disparate entities (whether people or
programs) is a fundamental purpose of an ontology.

KR languages can be given a rough classification into three categories:

e Logical languages. These languages express knowledge as logical statements. One
of the best-known examples of such a KR language is the Knowledge Interchange
Format (KIF) [22].

e Frame-based languages. These languages are similar to object-oriented database
languages.

e Graph-based languages. These include semantic networks and conceptual graphs.
Knowledge is represented using nodes and links between the nodes. Sowa’s concep-
tual graph language is a good example of this [57].

Perhaps because of the strong analogy between hypertext and semantic networks, most
recent KR languages have been graph-based.

If one identifies semantic network nodes with Web resources (specified by Universal
Resource Identifiers or URIs) and semantic network links with hypertext links, then the
result appears to form a basis for expressing knowledge representations that could span
the entire World Wide Web. However, links in hypertext, in much the same manner as
goto’s in programming languages, are at much too low a level of abstraction for ontologies.
The Resource Description Framework (RDF) [38] was introduced under the auspices of
the World Wide Web Consortium as a means of remedying this inadequacy. RDF is
a recommendation within the XML suite of standards. It introduces relationships with
formally defined semantics, that can link Web resources. RDF is developing quickly [18].
There is now an RDF Schema language, and there are many tools and products that can
process RDF and RDF Schema.

The DARPA Agent Markup Language (DAML) [17] [27] has introduced an OL called
DAML+OIL that extends RDF and RDF Schema and that expresses a much richer variety
of constraints. DAML+OIL is now being superseded by the Web Ontology Language
(OWL) [56], under the auspices of the World Wide Web Consortium. OWL has three
versions (or levels), called OWL Lite, OWL-DL and OWL Full. The distinction between
these three is explained in [61]. Figure 1 shows an example of an OWL Lite ontology
in diagrammatic form. The following is part of what this ontology would look like when
specified in the XML format for OWL:

<owl:Class rdf:ID="Invoice"/>
<owl:Class rdf:ID="Item"/>
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Figure 1: Diagram of an OWL ontology for invoices. The boxes are classes, and the arrows
linking them are properties. The PersonOrCompany class is the union of the Person and
Company classes.

<owl:Class rdf:ID="Product"/>
<owl:Class rdf:ID="Person"/>
<owl:Class rdf:ID="Company"/>
<owl:FunctionalProperty rdf:ID="purchasedBy">
<rdfs:domain rdf:resource="#Invoice"/>
<rdfs:range>
<owl:Class rdf:ID="PersonOrCompany">
<owl:unionOf parseType="Collection'">
<owl:Class rdf:about="#Person"/>
<owl:Class rdf:about="#Company"/>
</owl:union0f>
</owl:Class>
</rdfs:range>
</owl:FunctionalProperty>
<owl:InverseFunctionalProperty rdf:ID="includes">
<rdfs:domain rdf:resource="#Invoice"/>



<rdfs:range rdf:resource="#Item"/>
</owl:InverseFunctionalProperty>
<owl:FunctionalProperty rdf:ID="sku">

<rdfs:domain rdf:resource="#Item"/>

<rdfs:range rdf:resource="#Product"/>
</owl:FunctionalProperty>

A functional property is one that is mathematically a (partial) function, i.e., an object
can be related to at most one other object. An inverse functional property is a property
whose inverse (i.e., the property that interchanges the roles of the domain and range) is
functional. The includes property is more than just an inverse functional property. An
invoice is a “composite” or “aggregation” of its items. The notion of a composite can be
specified in OOMLs, but is not currently available in Web-based ontology languages.

One can regard RDF, RDF Schema, DAML~+OIL and the OWL levels as being a series
of progressively more expressive OL languages. The XTM Topic Maps (XTM) language
is another XML-based OL that has a very different history and semantics [67]. XTM is a
graph-based OL similar to RDF. It differs in the following respects:

e XTM relationships (called associations) can have any number of roles. By contrast,
the RDF languages only support typed binary relationships (i.e., ternary relation-
ships in which one role, called the predicate, is distinguished from the other two).

e XTM has a notion of scope or context that the RDF languages lack.
e The RDF languages have a formal semantics. XTM only has a formal meta-model.

Data conforming to an ontology is often referred to as an annotation or as markup,
since it typically abstracts or annotates some natural language text (or more generally
a hypertext document). The following is an invoice expressed as an annotation for the
ontology in Figure 1 as expressed in the OWL language:

<Person rdf:ID="C4365"/>
<Product rdf:ID="P284"/>
<Product rdf:ID="P683"/>
<Invoice dated="2003-06-21">
<purchasedBy rdf:resource="#C4365"/>
<includes>
<Item quantity="2.0">
<sku rdf:resource="#P284"/>
</Item>
<Item quantity="1.0">
<sku rdf:resource="#P683"/>



</Item>
</includes>
</Invoice>

An ontology may include vocabulary terms, taxonomies, relations, rules and assertions, all
of which can be represented in a machine-readable form. Accordingly, ontologies may be
computer artifacts, but they are not programs, at least not in the usual sense of the term.

When computers were large, slow and very expensive, there was never an issue about
what constituted computer software: Software consists of computer programs. With the
rapid expansion of computers into everyday life, it is no longer so easy to characterize
software. It is now possible for a company to create a large, sophisticated software system
without any programming at all in the traditional sense. LyeeAll is a good example
of a tool that helps make this possible. Conversely, artifacts that one might not think
of as software can involve sophisticated programming and software engineering. This
paper, for example, was developed using a number of XML-based programming languages
as well as design, configuration control, version control and testing techniques that one
would normally associate with traditional software development rather than document
preparation. Clearly, software is increasingly much more than just computer programs.

Unfortunately, the fiction that software consists of computer programs is still deeply
embedded in most Computer Science curricula. Students still have a strong tendency
to “program first and design later.” In many cases, the requirements and analysis are
completely omitted. Furthermore there is a significant bias in favor of programs over other
artifacts in the software development process. One exception is Bjgrner who includes
business modeling as an important part of software engineering [11].

Software process models such as the Model Driven Architecture (MDA) [42] and Lyee [43]
attempt to counter this tendency. MDA development focuses first on the functionality and
behavior of a distributed application or system, undistorted by idiosyncrasies of the tech-
nology or technologies in which it will be implemented. MDA separates implementation
details from business functions. I have been involved in the introduction of formal methods
(specifically using category theory from mathematics) to the MDA [54] [55]. I have also
been very active in running conferences and workshops that foster precise, explicit, and
elegant specifications of business and system semantics [4] [5] [6] [7] [32].

Lyee has an underlying theoretical axiomatic framework [44] that is founded upon (or
at least inspired by) cognitive models of human behavior, including human intention and
consciousness.

The MDA emphasizes the creation of many artifacts (called models) from which pro-
grams are derived. It is reasonable to consider these artifacts as being a form of software.
Formal ontologies are another example of artifacts that are not programs but which may
reasonably be classified as being software.

Given the bias mentioned above, it is not so surprising that the Computer Science

7



community has approached ontology development from a tools point of view. It is yet
another example of the tendency to write programs before they are designed or even have
requirements. I have been working to counter this tendency by adapting existing software
development methodologies for ontology development [8] [9] [36]. This paper continues
this effort.

3 The Development Process

According to Pressman [52], the foundation of software engineering is the process layer.
Software engineering methods are built upon the process layer, and software engineering
tools provide support for the methods and process. In the case of ontology development,
there are a great number of tools, some methods, and only a few explicit process models.
For a survey of the many tools, see [20]. A good source for methods is “Ontology 101” by
Noy and McGuinness [45]. The only complete process model is the Knowledge Analysis
and Documentation System (KADS) [59] which is intended primarily for developing expert
systems, not ontologies. KADS has been mostly ignored by current ontology efforts. In
fact, support for any kind of knowledge engineering methodology is rare [19].

The following table gives an approximate correspondence between the typical activities
of ontology development with the main activities that occur in software engineering.

Ontology Development Software Engineering
Acquire domain knowledge from experts | Requirements analysis
Organize the ontology Software design
Elaborate the ontology Implementation
Check consistency Test
Verify by domain experts Test

In this section we compare the activities in the rows of the table above.

3.1 Requirements

Modern software development process models include a requirements phase, and there is
a substantial literature on this subject, including a journal exclusively devoted to it [39].
This activity involves domain experts (also known as subject matter experts or SMEs). The
corresponding activity in ontology development is the acquisition of the domain knowledge
that will be formalized in the ontology. SMEs play a crucial role in this activity.

While SMEs are involved in both requirements analysis and knowledge acquisition, their
role is very different in the two cases. Requirements analysis not only involves acquiring



an understanding of the domain, it also determines the required function, behavior, per-
formance and interfaces. Ontology development typically omits these latter requirements.
In most cases, ontology development projects have no explicitly stated purpose beyond
the acquisition of the domain knowledge. When there is a stated purpose, it is usually too
generic to be useful in the ontology development process. Having a detailed stated purpose
would not entirely determine the required function, behavior, performance and interfaces,
but it would certainly help.

This situation is unfortunate because it has been known at least since the middle
of the nineteenth century [65] that the design of an ontology depends on its purpose and
viewpoint. Yet this fact has been forgotten and painfully rediscovered frequently since then.
It is important for any software development project to have precisely stated requirements,
and ontology development is no different. However, it is common (for example, [19]) to view
ontology development as beginning with knowledge acquisition and to mention purpose
only during the elaboration step, if at all. The viewpoint is seldom considered in ontology
development. By contrast, OOMLs such as the Reference Model for Open Distributed
Processing (RM-ODP) have an explicit notion of viewpoint [31].

By directly involving the stakeholders in the design process, Lyee offers the possibility
of capturing the purpose of the development effort more effectively than processes that sep-
arate the stakeholders from the developers. The latter processes are especially ineffective
when the purpose is left unstated, as is typical of ontology development efforts today.

Because the amount of knowledge to be acquired may be very large, it is important
for the knowledge to be structured. It is also important to track the source of knowledge
so that one can determine its trustworthiness. Both of these issues can be handled by
introducing a suitable notion of scope. Most OOMLs have a well developed notion of
scoping, which is not the case for all modern ontology languages.

3.2 Design and Implementation

There are some methodologies for organizing and elaborating ontologies. See for example,
Ontology 101 [45]. These methodologies are generally tool-specific. The Ontology 101
paper is specific to the Protégé-2000 tool from Stanford. What seems to be lacking in this
phase of ontology development is a systematic and tool-independent methodology that is
then supported by tools. In this section, some possibilities are introduced that could help
achieve this goal.

3.2.1 Design Patterns and Ontology Reuse

In accordance with the general theme of this paper, techniques are proposed by analogy
with software engineering. The first of these is Design Patterns. The notion of busi-
ness patterns for modeling languages was introduced about 10 years ago by Kilov and



Ross [34] [33]. A similar notion was introduced to OOPL at about the same time, and it
has been a very successful and popular methodology [21]. This approach can be applied to
ontology development. Indeed, many of the design patterns in [21] and later books could be
adapted to the needs of ontology development. In fact, virtually any well developed (and
preferably relatively small) ontology can serve as a design pattern. All that is necessary is
a systematic methodology for mapping (transforming) one ontology into another.

The process whereby one ontology is transformed to another is therefore the key to
design patterns, and the reuse of ontologies in general. The mathematical basis for ontology
reuse is the concept of a colimit from category theory. Some tools have been developed
that support colimits, such as OBJ [23] and Specware™ [58] [62]. Unfortunately, these
tools require a great deal of mathematical sophistication. These tools are difficult to use
even for an experienced, well-educated software engineer. A tool that would be usable by
an SME who is not a software engineer seems far out of reach.

To create an ontology reuse methodology that is logically well founded as well as easy
to use, it is necessary to consider the cognitive aspects of this process. Ontology trans-
formation has a cognitive interpretation in terms of metaphor. This was first developed
by Indurkhya [29]. The close connection of ontology reuse with cognition as developed by
Indurkhya has yet to be exploited by any ontology development methodology.

Ontology reuse is also very useful for ontology management. As ontologies become
larger, they become progressively more difficult to manage. Some kind of modularity
technique is necessary, not only for developing the ontology but for maintaining it after it
is developed. The colimit is very well suited for supporting ontology modularity, at least
theoretically. What remains is the problem of making this technique practical as well.

3.2.2 Refactoring

The second major technique is called Refactoring. While this technique is not nearly as
well understood as Design Patterns, some theoretical models have been developed that
show promise, as for example in [47] and [1]. Refactoring is concerned with adjusting a
software design when it has been found to be inadequate. The Lyee methodology achieves
this by executing the program as it is being designed, and the design can be modified to
fit the stakeholders’ intentions.

These same issues often arise in ontology development as well. These issues are generally
grouped under the term ontological commitment, but little has been done to formalize the
processes that take place. Some examples of these processes include:

e Modifying property domains and ranges. This is the process that gives refactoring
its name. A set of properties on subclasses can be changed to a single property on
a superclass, or a property on one class can be shifted to become a property on a
related class.
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e Reification. This is the process whereby concepts that are not classes are given class
status. For example, a relationship can be reified to become a class. Reifying a
binary relationship will replace the relationship with a class and two relationships.

e Unreification. This is the reverse process to reification.

e Metalevel shifting. This process is very powerful, yet seldom mentioned. In this
process, metalevel notions, such as that of a class or an attribute, are instantiated
as ordinary notions. Most OOPLs allow the structure of the program to be accessed
by the program. This is known as reflection, and it is one example of the process of
metalevel shifting.

As an example of refactoring, consider the Invoice ontology in Figure 1. It actually
may have a subtle error, and a knowledge engineer who was not an SME might easily miss
it. In this design the price of an Item is that of the Product that was purchased by
the customer. This may be operationally incorrect. While the price of an Item is related
to that of the Product, there are any number of ways that it may differ. For example,
there may be a discount. Furthermore, if the price of a Product subsequently changes,
that should not affect any previously existing invoices. To deal with these possibilities, the
design should be refactored as shown in Figure 2.

As another example of refactoring, consider the price of a Product. The stakeholders
may require that this property have multiple values each with its own attributes, such as
the date it was introduced, the date when it expires, who authorized the price, and so on.
When a property is functional, one can attach such additional attributes to the domain
class. However, this breaks down when the property is multi-valued. The most effective
technique for dealing with these requirements is to reify the property. The price property
is replaced by a Price class and two new properties, as in Figure 3.

Examples of the metalevel shifting technique are given in Section 4.1 and Section 4.2
below.

One interesting aspect of the invoice refactoring is that problems are often most easily
found by viewing the ontology operationally. Ontologies do not specify operations (i.e.,
behavior); indeed, one of their strengths is that they are not bound by operational consid-
erations. However, even if one does grant this, it is still the case that the use of operational
language assists in finding errors.

Lyee, in theory, seems to be especially well suited to this process. However, it certainly
cannot do so in its present form. The problem is exactly the issue mentioned above:
ontologies are not operational even though their suitability for a purpose generally involves
some kind of operational reasoning. Where can Lyee (or any development process) obtain
the operations that are necessary for the process? This issue arises again in testing and
validation in Section 3.3 below, and at least a partial answer is proposed.

11



subClassOf

Person

Person or Company [+

3 subClassOf
customer\ Company

dated

Invoice Date
includes
Item Double
sku
price
Product :
name String

Figure 2: Refactored ontology for invoices. The new property is shown in gray.

3.3 Testing and Validation

Testing and validation have always been accepted as an important part of ontology develop-
ment. However, these activities are casual and informal in most cases. This is remarkable
because ontology development is much more formal than software development. The most
likely reason for this seeming contradiction is the fact that ontology development usually
has no precisely stated purpose. As a result, one cannot formally test that the purpose
has been achieved.

One activity (and perhaps the only one) that can be performed without explicitly
specifying requirements is consistency checking. Obviously, consistency is fundamental for
any formal system that supports inference. If a formal system is inconsistent, then every
statement can be proven true (and also proven false, since true = false in an inconsistent
formal system). Accordingly, inference is useless when a formal system is inconsistent.

Despite the importance of consistency for ontology languages, both the languages them-
selves and ontologies expressed in those languages are often checked manually. Substantial
inconsistencies have been found in KIF, RDF and DAML+OIL long after these languages
were proposed (and even accepted) as standards [10]. The inconsistency of KIF is espe-
cially noteworthy given that KIF has been a draft standard for many years. Furthermore,
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Figure 3: Reification of the price of a product. The reification is shown in gray.

the inconsistency was not due to some obscure axioms, but occurred in the axioms for
lists, arguably the most fundamental axioms of all. Specifically, the inconsistency was in
the axioms for the first element of a list and for the rest of a list (cf. [10]).

Consistency checking is one characteristic of ontology development that distinguishes
it from general software development. While it would certainly be desirable to prove that
software is formally correct, it is not common to do so, largely because most programming
languages are not, formally defined.

On the other hand, it is also desirable to test ontologies as one would test programs.
This is certainly possible, but it is not common to do so. The reason is that performing tests
requires that the requirements be explicitly stated. As mentioned above in Section 3.1, it is
not common to specify requirements, so it is not possible to perform meaningful acceptance
tests and validations.

In the absence of explicitly stated requirements, the only alternative is to involve the
stakeholders directly in the testing process. Testing would proceed by presenting a stake-
holder or group of stakeholders with randomly generated scenarios designed to determine
the accuracy of the ontology. Lyee uses a similar technique for its testing and validation
process. For example, if a property was not constrained to be functional, then the system
would generate a scenario in which the property links a single object with two provably
different objects. The stakeholder(s) would then be asked if this is acceptable. It is chal-
lenging to generate a sufficient number of scenarios so that one can feel confident in the
ontology. The error in the Invoice ontology in Figure 1 is an example of a flaw that one
would not find using scenarios based on violations of static constraints such as cardinal-
ity constraints. However, it is reasonable to predict that a solid theoretical framework is
possible and that this challenge can be met.
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4 Classes

The notion of class is fundamental both to object-oriented software and to modern ontolo-
gies. While both concepts arose from Philosophy, they have diverged from one another and
are now substantially different. OLs define a class to be a set (i.e., a one-place predicate)
while object-oriented classes have considerably more structure. In this section we discuss
a number of features of classes that distinguish OLs from OOPLs.

4.1 Sets or Templates

In OOPLs a class is a template for constructing objects that have a specified data structure
and associated functions. Objects are instances of a class because they have been explicitly
constructed to be instances. An object never changes its class throughout its lifetime.

OLs and many OOMLs have a very different point of view. For such a language, a
class is a set of objects. Membership of an object in a set can be explicitly declared, but
it can also be inferred. For example, one can define a class Teenager to be the subclass of
Person such that the age attribute is between 13 and 19. See Figure 4. Thus an object
can change from being not in the class, to being in the class, and back to being not in the
class again. Objects can also be instances of several classes that are not otherwise related
to one another. By contrast, an object in an OOPL is constructed as an instance of exactly
one class, and the object will only be an instance of superclasses of this class.

Person {
Double

subClassOf

Teenager

Figure 4: An example of a class such that an instance can subsequently cease to be an
instance. A teenager can cease to be a teenager without ceasing to be a person. Object-
oriented programming languages do not allow the type of an object to change.

In general, an OL class can be defined in terms of other classes using the set-theoretic
operations of union, intersection and complement. An OL class can also be restricted to
take particular attribute values (e.g., the Teenager class defined above). The number of
values of an attribute can also be restricted (using a cardinality restriction). These are
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called class constructors. Note that this is very different from the constructors used in
OOPLs. The former constructs classes while the latter constructs objects.

Since OL classes are sets, the subclass concept has a simple interpretation as the subset
relationship. One immediate consequence of this interpretation is that the subclass rela-
tionship is transitive. To some degree one can also view an OOPL class as a set; namely
the set of instances of the class. However, this is not always accurate, and the failure
of this interpretation becomes clear when one considers the subclass relationship. This
relationship cannot, in general, be interpreted as the subset relationship. It satisfies the
weaker notion of substitutability: an instance of a subclass can be used as if it is also an
instance of an immediate superclass. While substitutability appears to be the same as the
subset relationship, it does not imply transitivity.

Reconciling the points of view of OLs and OOPLs is not easy. However, the issue arises
only if OL classes are intended to be realized as OOPL classes. Even if an ontology is to be
realized using an OOPL, it is not necessary for there to be an exact correspondence between
OL classes and OOPL classes. The ontology should not be restricted by technological
considerations. Thus it is important to understand the intentions of the stakeholders. If
such a realization is part of the purpose of the ontology, then the design should not use
classes for those parts of the ontology that would violate the constraints of the OOPL class
concept. The design can be modified by using the metalevel shifting technique that was
discussed in Section 3.2.2 above.

4.2 Behavioral versus Set-Theoretic Semantics

OOPL classes are much more than just sets of objects. They also endow objects with be-
havior as defined by functions called methods. This has led to frequent confusion concerning
the meaning of a class hierarchy. As explained by [3], the difficulty in modeling a hierarchy
of concepts using software environments is best exemplified by the failure of attempts to
find an epistemological foundation of the subclass concept. Brachman [12] [13] [14] points
out that there are six different kinds of generic-generic relations and four different kinds
of generic-individual relations all of which are grouped together under the IS-A label.

The classic example of the resulting confusion is the question of whether square is
a subclass of rectangle. From a set-theoretical (logical) point of view, it seems obvious
that squares are a proper subset (and therefore subclass) of rectangles as in design A of
Figure 5. However, according to one view of cognition and concepts, objects can only be
defined by specifying the possible ways of acting on them [29] [48]. For instance, Piaget
[48] showed that the child constructs the notion of object permanence in terms of his or
her own actions.

Accordingly, the concept square, when defined to be the set of all squares without any
actions on them, is not the same as the concept square in which the objects are allowed to
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height: Double

stretch(factor:Double)
magnify(factor:Double)

Figure 5: Three designs for modeling squares and rectangles. In design A, the Square class
is a subset of the Rectangle class. The attributes and behavior are defined separately.
In design B, the Rectangle class is an extension of the Square class. All attributes and
behavior are shown (including the overloading of the magnify method). In design C, an
attribute

be shrunk or stretched. In fact, it has been found that children’s concepts of square and
rectangle undergo several transformations as the child’s repertoire of operations increases
[49] [50].

OOPLs take a behavioral point of view, and so design B in Figure 5 seems to be more
appropriate. This is a design that can be fully instantiated using C+-+ or Java classes.
However, even that design may not be entirely adequate. If a figure is constructed to be
a rectangle, it cannot become a square no matter how one stretches it. In design C of
Figure 5, the design has used metalevel shifting (cf. Section 3.2.2) to refactor the classes
in the first two designs into an attribute. There being just two classes, the attribute is
Boolean. For larger class hierarchies, one would need a more complex property.

Unfortunately, concepts in the real world, which ontologies attempt to model, do not
come in neatly packaged hierarchies. This mistaken view is the result of restricting oneself
to simple examples such as persons and elephants [64]. Wegner, in fact, assumes that these
“intuitive” hierarchies are mind-independent, preexisting, real-world concept hierarchies.
We need to look only a little further to see how complex our everyday concept hierarchies
can be, as discussed in [2] [30] [37] [53].

Lyee explicitly recognizes the role of cognitive agent in creating objects and structures.
This aligns it very well with OOPLs, but not with OLs. In spite of the agent emphasis in
modern OLs, ontologies tend to take the set-theoretic rather than the behavioral point of
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view toward classes. On the other hand, as discussed in Section 3.2.2, operational reasoning
is important even for set-theoretic classes.

5 Properties

Ontologies are defined in Philosophy as the study of what exists and the relationships
between the existents. The two fundamental notions in formal ontologies are classes and
relationships. There are two notions of relationship: attribute and association. An at-
tribute is a feature of an object that has a concrete interpretation (e.g., a text string or
a number). Associations, on the other hand, relate objects to other objects. The two
notions are often treated as subclasses of a single notion, variously called a relationship or
a property. For definiteness, we will use the term property.

One important feature of most OLs is that properties have the same status as classes.
Properties are defined independently of classes and are linked with them only by means
of restrictions. One says that the properties are “first-class” because they can be specified
at the highest modeling level. By contrast, OOPLs encapsulate properties within classes.
Consequently, an OOPL property is always subsidiary to the class that “owns” it. Con-
straints on OOPL properties are local to the class that owns the property, but constraints
on OL properties can be unrelated to any classes. For example, an OL property can be
constrained to be transitive and/or symmetric.

Faculty —— | University
location

Building ——— ] Address

location

Figure 6: An example of the same property being used in two different contexts.

To understand this distinction, consider the notion of location. In an OOPL this
would be specified separately for every class, while it would be a single property in an
ontology. For instance, the location property could associate Faculty with University.
Each link of this association would give the University affiliation of a faculty member.
The same property might also be used for associating a Building with its Address. See
Figure 6. In an OOPL these two location notions would be different attributes in spite of
having the same name.
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The fact that OL properties are independent modeling notions is inherited from the
origins of OLs in logic languages where properties are called “predicates.” In logic-based
OLs, it is the predicates that are the primary modeling notion and classes (if they exist
at all) are secondary. One consequence is that OLs do not support encapsulation. Since
encapsulation is an important modularity mechanism, this has consequences for ontology
development. The loss of encapsulation is to some degree compensated by the added
flexibility obtained by having first-class properties. In the OOPL community a first-class
function is called an aspect, so it is reasonable to assert that OLs support aspect-oriented
modeling. Aspect-oriented programming is a popular research topic in the Object-oriented
programming community. A notion of aspect-oriented modeling (although that name was
not used) was introduced in 1996 in [35]. The first proposal for adding aspects to current
OOMLs was made in [8], and further elaborated in [9].

Modern OLs are primarily based on the mathematical notion of a graph or network
(consisting of a set of vertices and edges). Natural Language Processing (NLP) systems are
well suited to being represented with an OL because an edge from one vertex to another
corresponds to a predicate linking a subject to an object. The fact that verbs are defined
independently of nouns (and hence are first-class concepts) is another reason why NLP is
more compatible with OLs than with OOPLs. Of course, both verbs and nouns must be
disambiguated, but this is a very different issue. Both OLs and OOPLs presume that all
notions are unambiguous. Lyee is sensitive to natural language constructs, and this makes
it rather more appropriate for NLP than most object-oriented development methodologies.

Introducing aspect-oriented modeling to object-oriented modeling is not as easy as it
first appears. One common suggestion is to reify the property, as shown in Figure 3 of
Section 3.2.2. Since classes are first-class modeling elements, this appears to solve the
problem. For example, instead of modeling location as an OOPL property, one could
model it as a class Location. This is certainly appropriate when location is multi-valued
and can have its own attributes. However, in the absence of such requirements, reification
has several disadvantages. It produces complex, unnatural ontologies. It also puts the
burden on the ontology developer to deal with this incompatibility issue. The most subtle
problem with this technique is that it produces an unbounded mapping, in the sense defined
in [8].

An alternative that can achieve the spirit of aspect-oriented modeling is to use ontol-
ogy reuse techniques based on the colimit operation, as suggested in Section 3.2.1. This
technique is theoretically well founded. However, as discussed in that section, it is difficult
to use in currently available tools.
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6 Logic

OLs differ from OOPLs in their explicit support for logical inference. Although OOPLs do
not claim to support logical inference, they do, in fact, have a number of inference mech-
anisms. The best known is inheritance, whereby an object of one class can be inferred to
belong to other classes. This inference mechanism takes place at run-time when polymor-
phic methods are invoked. In addition to inheritance, OOMULs have support for various
constraints such as cardinality constraints. This section discusses the ways in which the
inference mechanisms of OOPLs differ from the explicit inference mechanisms or OLs.

6.1 Open versus Closed Worlds

An important distinction between OLs and OOMLs is the notion of monotonicity. A logical
system is monotonic if adding new facts can never cause previous facts to be falsified. Of
course, one must be careful to define which facts are being considered in this process so
that it makes sense. Modern OLs are generally monotonic: asserting a new fact can never
cause a previously known fact to become false.

By contrast, OOMLs are typically not monotonic. There are many forms of non-
monotonic logic, but the one that is closest to OOMLs is a logic that assumes a closed
world. A simple example can illustrate how monotonicity affects inference. Suppose that
one specifies that every person must have a name. Consider what would happen if a
particular person object does not have a name. In an OOML this situation would be
considered to be a violation of the requirement that every person must have a name, and
a suitable error message would be generated. In a monotonic logic, on the other hand, one
cannot make any such conclusion. The person who appears not to have a name really does
have one, it just isn’t known yet.

Person #C4365

Person #C4366

Figure 7: An example of the distinction between open and closed worlds. An invoice
is intended for exactly one customer. This particular invoice was specified to have two
customers. In a closed world, this would be a violation of the constraint. In an open
world, one can infer that the two persons are the same. In the diagram the inferred
information is shown in gray.
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As another example, consider the Invoice ontology of Figure 1. In this ontology a
invoice can have at most one purchaser. This is specified by asserting that the purchasedBy
property is functional. Now suppose that one has specified that a particular invoice has
two purchasers. In OWL this would be stated as follows:

<Invoice dated="2003-06-23" id="I987">
<purchasedBy rdf:resource="#C4365"/>
<purchasedBy rdf:resource="#C4366"/> </Invoice>

In an OOML this would violate the cardinality constraint, and that would be the end of it.
In a monotonic logic, on the other hand, one cannot make such a conclusion, at least not
directly. It is possible that C4365 and C4365 are the same customer. It is unlikely that the
annotator intended this, but it is consistent nonetheless, unless there are other constraints
that might be violated by it. For example, suppose that the Person0rCompany class had
a name functional property whose range was of type String. Then C4365 and C4365 can
be equivalent only if their names were the same.

As another example, suppose that it is required that an invoice have exactly one pur-
chaser. In an OOML an invoice that had no purchaser at all would clearly violate this
requirement. In a monotonic logic, on the other hand, there is no inconsistency at all.
There is a purchaser, one just does not know who it is, as shown in Figure 8.

Invoice #1305

Figure 8: An example of an unspecified but mandatory relationship. This is not allowed
in a closed world. In an open world, one can infer that there is an anonymous object
that fulfills the requirement. Since the invoice did not have a purchaser, an anonymous
customer is introduced for this purpose. The inferred customer and relationship are shown
in gray.

Virtually all of the consistency constraints that one is accustomed to impose with
OOMLs (including domain constraints, range constraints and cardinality constraints) have
very different consequences in monotonic and non-monotonic logics. This distinction be-
tween OOMLs and OLs would therefore seem to be insurmountable.

Fortunately, in practice there are many ways to limit the scope of an ontological infer-
ence. If two individuals (which could be people or programs) are interacting, then there
must have been a prior agreement that specifies the ontologies that will be used for com-
munication. By limiting the scope, one is effectively replacing the “open world” with a
closed one. The conclusion is that while OLs are defined using open, monotonic logics,
they are operationally very similar to OOPLs which used closed world assumptions.
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7 Conclusion

This paper has presented a case for employing more rigorous process models and method-
ologies in ontology development than the ad hoc, informal methodologies currently in use.
It has been proposed that object-oriented software development in general (and Lyee in
particular) is a good starting point for such process models and methodologies. While there
are many ways in which ontologies and ontology development differ from programs and
program development, the differences are not insurmountable. A number of suggestions
were made in this regard, but they are only the first steps toward the goal of creating viable
process models and methodologies. It is hoped that this paper will encourage further work
in this area.

8 Acknowledgments

This material is based upon work supported by the Air Force Research Laboratory, Con-
tract Number F30602-00-C-0188. Any opinions, findings and conclusions or recommenda-
tions expressed in this material are those of the author(s) and do not necessarily reflect
the views of the Unites States Air Force. I also wish to acknowledge Haim Kilov, who
carefully read the paper and made many useful suggestions.

References

[1] O. Arai and H. Fujita. A word-unit-based program: Its mathematical structure modeal and
actual application. In New Trends in Software Methodologies, Tools and Techniques, pages
63—-74. 10S Press, Amsterdam, 2002.

[2] K. Baclawski. Long time, no see: Categorization in information science. In S. Hecker and
G.C. Rota, editors, Essays on the Future. In Honor of the 80th Birthday of Nick Metropolis.
Birkhauser Boston, Cambridge, MA, 1997.

[3] K. Baclawski and B. Indurkhya. The notion of inheritance in object-oriented programming.
Comm. ACM, 37(9):118-119, September 1994.

[4] K. Baclawski and H. Kilov, editors. Ninth OOPSLA Workshop on Behavioral Semantics.
Northeastern University, College of Computer Science, Boston, MA, November 2000.

[5] K. Baclawski and H. Kilov, editors. Tenth OOPSLA Workshop on Behavioral Semantics.
Northeastern University, College of Computer Science, Boston, MA, October 2001.

[6] K. Baclawski and H. Kilov, editors. Eleventh OOPSLA Workshop on Behavioral Semantics.
Northeastern University, College of Computer Science, Boston, MA, November 2002.

21



[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

K. Baclawski, H. Kilov, A. Thalassinidis, and K. Tyson, editors. Eighth OOPSLA Workshop
on Behavioral Semantics. Northeastern University, College of Computer Science, Boston,
MA, November 1999.

K. Baclawski, M. Kokar, P. Kogut, L. Hart, J. Smith, W. Holmes, J. Letkowski, and M. Aron-
son. Extending UML to support ontology engineering for the Semantic Web. In M. Gogolla
and C. Kobryn, editors, Fourth International Conference on The Unified Modeling Language,
volume 2185, pages 342-360. Springer-Verlag, Berlin, October 2001.

K. Baclawski, M. Kokar, P. Kogut, L. Hart, J. Smith, J. Letkowski, and P. Emery. Extending
the Unified Modeling Language for ontology development. Software and System Modeling,
1(2):142-156, 2002.

K. Baclawski, M.M. Kokar, and R. Waldinger. Consistency checking of Semantic Web
ontologies. In Proc. of the International Semantic Web Conference, June 2002.

D. Bjgrner. Domain models of “the market” — in preparation for e-transaction systems. In
H. Kilov and K. Baclawski, editors, Practical Foundations of Business and System Specifi-
cations, pages 111-144. Kluwer Academic Publishers, 2003.

R. Brachman. On the epistemological status of semantic networks. In N. Findler, editor,
Associative Networks: Representation and Use of Knowledge by Computers, pages 3-50.
Academic Press, New York, NY, 1979.

R. Brachman. What IS-A is and isn’t: An analysis of taxonomic link in semantic networks.
Computer, 16(10):30-36, 1983.

R. Brachman. “I lied about the trees” or, defaults and definitions in knowledge representa-
tion. AI Magazine, pages 80-93, Fall 1985.

M. Bunge. Treatise on basic philosophy. III: Ontology: The furniture of the world. Reidel,
Dordrecht, 1977.

M. Bunge. Treatise on basic philosophy. IV: Ontology: A world of systems. Reidel, Dordrecht,
1979.

DARPA Agent Markup Language Web Site, 2001. www.daml .org.

S. Decker, D. Brickley, J. Saarela, and J. Angele. A query and inference service for RDF.
In QL’98 - The Query Language Workshop, 1998.

M. Denny. Ontology building: A survey of editing tools, November 2002. www.xml.com/-
pub/a/2002/11/06/ontologies.html.

M. Denny. Ontology editor survey results, November 2002. www.xml.com/2002/11/06/-
Ontology Editor_Survey.html.

22



[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1995.

M. Genesereth. Knowledge Interchange Format draft proposed American National Standard
(dpANS) NCITS.T2/98-004, 1998. Available at logic.stanford.edu/kif/dpans.html.

J. Goguen and G. Malcolm, editors. Software Engineering with OBJ: Algebraic specification
in action. Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000.

N. Guarino and P. Giaretta. Ontologies and knowledge bases: Towards a terminological
clarification. In N. Mars, editor, Towards Very Large Knowledge Bases. IOS Press, 1995.

J. Heflin, J. Hendler, and S. Luke. Coping with changing ontologies in a distributed envi-
ronment. In AAAI-99 Workshop on Ontology Management. MIT Press, 1999.

J. Heflin, J. Hendler, and S. Luke. SHOE: A knowledge representation language for In-
ternet applications. Technical Report www.cs.umd.edu/projects/plus/SHOE, Institute for
Advanced Studies, University of Maryland, 2000.

J. Hendler and D. McGuinness. The DARPA Agent Markup Language. IEEFE Intelligent
Systems, 15(6):67-73, 2000.

B. Humphreys and D. Lindberg. The UMLS project: making the conceptual connection
between users and the information they need. Bulletin of the Medical Library Association,
81(2):170-177, 1993.

B. Indurkhya. Metaphor and Cognition. Kluwer Academic Publishers, Dordrecht, The
Netherlands, 1992.

B. Indurkhya. On the philosophical foundation of Lyee: Interaction theories and Lyee.
In New Trends in Software Methodologies, Tools and Techniques, pages 45-51. TOS Press,
Amsterdam, 2002.

Basic Reference Model for Open Distributed Processing. Use of formal specification tech-
niques for ODP (ISO/IEC JTC1/5C21/WG7 N 753), November 1992.

H. Kilov and K. Baclawski, editors. Practical Foundations of Business and System Specifi-
cations. Kluwer Academic Publishers, Dordrecht, The Netherlands, 2003.

H. Kilov and W. Harvey, editors. Object-Oriented Behavioral Specifications. Kluwer Aca-
demic Publishers, 1996.

H. Kilov and J. Ross. Information Modeling: An Object-Oriented Approach. Prentice-Hall,
Englewood Cliffs, NJ, 1994.

23



[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]
[43]

[44]

[45]

[46]

[47]

[48]

H. Kilov and I. Simmonds. Business patterns: reusable abstract constructs for business
specification. In P. Humphreys et al., editors, Implementing Systems for Supporting Man-
agement Decisions: Concepts, methods and experiences, pages 225-248. Chapman and Hall,
1996.

P. Kogut, S. Cranefield, L. Hart, M. Dutra, K. Baclawski, M. Kokar, and J. Smith. UML
for ontology development. Knowledge Engineering Review, 2001.

G. Lakoff. Women, Fire, and Dangerous Things: What Categories Reveal about the Mind.
The University of Chicago Press, Chicago, 1987.

O. Lassila and R. Swick. Resource description framework (RDF) model and syntax specifi-
cation, Feburary 1999. www.w3.org/TR/REC-rdf-syntax.

P. Loucopoulos and J. Mylopoulos, editors. Requirements Engineering. Springer-Verlag,
Limited, London, 1996.

D. McGuinness. Ontologies and online commerce. IEEE Intelligent Systems, 16(1):8-14,
2001.

D. McGuinness, R. Fikes, J. Rice, and S. Wilder. An environment for merging and test-
ing large ontologies. In Proceedings of the Seventh International Conference on Princi-
ples of Knowledge Representation and Reasoning (KR2000), Breckenridge, Colorado, USA,
April 12-15 2000.

The Model Driven Architecture, 2003. www.omg.org/mda.

F. Negoro. Principle of Lyee software. In Proceedings of the 2000 International Conference
on Information Society in the 21st Century (I52000), pages 441-446, November 2000.

F. Negoro. Lyee’s hypothetical world. In New Trends in Software Methodologies, Tools and
Techniques, pages 3-22. I0S Press, Amsterdam, 2002.

N. Noy and D. McGuinness. Ontology 101, 2001. Available at protege.stanford.edu/-
publications/ontology development/ontology101.html.

B. Opdahl, A. Henderson-Sellers and F. Barbier. An ontological evaluation of the OML
metamodel. In E. Falkenberg, K. Lyytinen, and A. Verrijn-Stuart, editors, Information Sys-

tem Concepts: An Integrated Discipline Emerging, volume 164, pages 217-232. IFIP /Kluwer,
1999.

J. Philipps and B. Rumpe. Refactoring of programs and specifications. In H. Kilov and
K. Baclawski, editors, Practical Foundations of Business and System Specifications, pages
281-297. Kluwer Academic Publishers, 2003.

J. Piaget. The Construction of Reality in the Child. Ballantine Books, New York, NY, 1971.

24



[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]
[59]

[60]

[61]

[62]
[63]

J. Piaget and B. Inhelder. The Child’s Conception of Space. W.W. Norton and Company,
New York, NY, 1967.

J. Piaget, B. Inhelder, and A. Szeminska. The Child’s Conception of Geometry. W.W. Norton
and Company, New York, NY, 1981.

D. Pisanelli, A. Gangemi, and G. Steve. Ontologies and information systems: the marriage
of the century? In New Trends in Software Methodologies, Tools and Techniques, pages
125-133. 10S Press, Amsterdam, 2002.

R. Pressman. Software Engineering: A Practitioner’s Approach, Fifth Edition. McGraw-Hill,
New York, 2001.

E. Rosch and B. Lloyd, editors. Cognition and Categorization. Lawrence Erlbaum Associates,
Hillsdale, NJ, 1978.

J. Smith, M. Kokar, and K. Baclawski. Formal verification of UML diagrams: A first step
towards code generation. In A. Evans, R. France, A. Moreira, and B. Rumpe, editors, Practi-

cal UML-Based Rigorous Development Methods — Countering or Integrating the eXtremists,
volume P-7, pages 224-240. Gesellshaft fiir Informatik, October 2001.

J. Smith, M. Kokar, K. Baclawski, and S. DeLoach. Category theoretic approaches of rep-
resenting precise UML semantics. In Proceedings of the Precise UML Workshop at ECOOP
2000, Sophia Antipolis, France, 2000.

M. Smith, D. McGuinness, R. Volz, and C. Welty. OWL web site, November 2002. www.-
w3.org/TR/owl-guide/.

J. Sowa, editor. Knowledge Representation: Logical, Philosophical, and Computational Foun-
dations. PWS Publishing, 2000.

Specware™ User Manual: Specware™ Version Corej, October 1994.

D. Tansley and C. Hayball. Knowledge-based systems analysis and design. Prentice Hall
International (UK) Ltd., Hertfordshire, England, 1993.

M. Uschold and M. Gruninger. Ontologies: Principles, methods and applications. Knowledge
Engineering Review, 11(2):93-155, June 1996.

F. van Harmelen, J. Hendler, I. Horrocks, D. McGuinness, P. Patel-Schneider, and L. Stein.
OWL Web ontology language reference, March 2003. www.w3.org/TR/owl-ref/.

R. Waldinger et al. Specware™ Language Manual: Specware™ 2.0.3, March 1998.

Y. Wand. A proposal for a formal model of objects. In W. Kim and F. Lochovsky, editors,
Object-oriented concepts, databases and applications, pages 537-559. Addison-Wesley, 1989.

25



[64] P. Wegner. The object-oriented classification paradigm. In B. Shriver and P. Wegner, editors,
Research Directions in Object-Oriented Programming, pages 479-560. MIT Press (Computer
Systems Series), Cambridge, MA, 1987.

[65] W. Whewell. The Philosophy of the Inductive Sciences, Second Edition. Parker, London,
1847.

[66] L. Wittgenstein. Tractatus Logico-Philosophicus. Dover Publications, Incorporated, 2001.
[67] The XTM Web Site, 2000. topicmaps.org.

26



