
Stability of Self-Adaptive Software: A Case

Study

Mieczyslaw M. Kokar1, Kenneth Baclawski1

, Yong Xun1, and Kevin M. Passino2

1 Northeastern University, Boston, Massachusetts, USA
kokar@coe.neu.edu

kenb@ccs.neu.edu
2 Ohio State University, Columbus, Ohio, USA,

passino@ee.eng.ohio-state.edu

Abstract. The paradigm of self-controlling software is becoming recog-
nized as a way of achieving both better performance and robustness in
the presence of unexpected changes in the environment. However, self-
control (often referred to as self-adaptation), if not properly designed,
can lead to some emerging behaviors that may not only lower the per-
formance of the system, but even lead to catastrophic outcomes. In this
paper we show an example of a self-controlling system based on the con-
trol metaphore. The system is a dynamic resource allocator (scheduler).
We first show a model of such a system. Then we simulate its behavior
and show that the self-controlling function can lead to unstable behavior
of the whole system. We discuss ways to deal with such a problem.

1 Introduction

2 An Example of a Self-Controlling System

In this paper we describe a resource management system whose main part is
a scheduler. The goal of the scheduler it to allocate a receiver (resource) to a
particular radar (task). It is assumed that there are n radars in the environment.
Each of the radars rotates continuously. However, it illuminates only in the
direction it is pointing to at a particular time. There is also one controller for
each radar. The contoller computes the desired time of the next dwell on the
radar. Both the controller and the scheduler need a computer to perform their
operations. Therefore, the computer class is part of the system model. Figure 1
represents the UML class diagram of the whole system.

We model radars as timed automata. We assume that each radar’s beam
width is 2o. Consequently, the radar can point in 180 different directions. We
model this with 180 states, one for each direction. It points in a direction for the
time interval dt and then switches to the next state. The direction depends on
the X−Y coordinates of the radar, in addition to the state it is in. For the sake
of interaction with the Receiver we defined an interaction variable radar− i, for
each radar. The value of this variable keeps track of the direction that the radar

2

1..*

1

Scheduler

1

1

1

1

1..*1 Controller

Computer

1

1..*

runs-on

Receiver
Radar-i

1..*1

Fig. 1. The Resource Management System

is pointing to. This variable contains the equation of the line and the direction.
It is represented as a triple < a, b, d >, where a and b are the coefficients of the
line equation ax + b and d is the radar’s pointing direction i.e., the angle with
respect to theWest−East line. The state transition diagram for a radar (in this
case it is radar-i) is shown in Figure 2. We assume that the radar is initialized
in a randomly selected state.

[it-i] [it-i]

[dt]

Illuminating-1 Illuminating-2 Illuminating-180

entry/radar-i:=1 entry/radar-i:=2 entry/radar-i:=180

Fig. 2. The behavior of the Radars

The receiver is controlled by the scheduler (see Figure 4). The scheduler
generates schedulig events (sched− 1, . . . , sched− n). The receiver, in response
to an event sched−i switches to the state PointingAtRadar−i for the duration of
the dwell time prescribed by the scheduler. When pointing at a particular radar,
the receiver either detects the radar or not, depending on whether the receiver
is currently located on the direction in which the radar is illuminating during
this dwell time or not (see Figure 3). If the receiver is on that line, the receiver

3

generates an event of detection, i.e., detect− i is set to 1. Otherwise, detect− i
is set to 0. Since the receiver is on a moving platform, the line with respect to
a particular radar changes constantly. Thus even if the receiver is on the line of
a particular radar at the beginning of its dwell, it may be outside of the line at
some point in the middle of the dwell. Consequently, if this happens, the radar
cannot be detected. For this reason, the detect− i event must be generated only
when the receiver is within the line of view of the radar for the whole dwell
period.

x

y

RadarReceiverReceiver

Detection zone

Fig. 3. The detection scenario

The receiver is modeled as a timed automaton as in Figure 4. Its continuous
dynamics is given by the equation

dV

dt
= 0 (1)

where V (0) = V0. In other words, the receiver is moving with a constant velocity
V0.

The detection event is passed to an appropriate controller. In this system
there is one controller for each radar. In response to a detection (or non-detection)
event the controller needs to compute the time at which the receiver should be
pointed again at that radar (next dwell). To perform this action the controller

4

sched-1
[dt]/detect-1

sched-n

[dt]/detect-n

Idle

PointingAtRadar-1

PointingAtRadar-n

if radar=radar-1 then detect-1=1
 else detect-1=0

if radar=radar-n then detect-n=1
 else detect-n=0

Fig. 4. The behavior of the Receiver

needs the computer. Consequently, it first sends the compute event to the com-
puter and then invokes its control law to compute the time of next dwell on
that radar. After this is done, the controller sends the next dwell time to the
scheduler and then releases the computer by sending the release event. The state
transition diagram for the controller is shown in Figure 5.

After the scheduler receives the dwell − i event it re-computes its schedule.
A schedule consists of a list of Control Descriptor Words (CDWs). Each CDW
contains information on the radar id, the start time of next and the duration
of the dwell. The CDW event is then sent to the receiver. Similarly as with
the controller, the scheduler needs the computer to perform its computation.
And consequently, it sends a compute event to the computer at the start of
computation, and then the release event when the computation is complete.
The state transition diagram for the scheduler is shown in Figure 6.

Finally, we discuss the last system component - the computer. Since this
system is a self-aware system, the computer needs to be represented explicitly.
The computer is shown to be invoked by the controller and by the scheduler
by sending the compute event. It is released by the release event received from
either the controller or the scheduler. If the computer is computing the next
control input, and thus is in the ComputingControl, then it can be released
only by the controller; similarly for the scheduler. The state transition diagram
for the computer is shown in Figure 7.

5

detect-i/compute-dwell

/release-dwell

Idle
Computing

Dwell

exit/dwell-i

Fig. 5. The Controller

3 Stability

The performance of this system is measured in terms of probability of detection
(Pd) defined as the number of detections of a particular radar over the number
of possible detections (the number of rotations of the radar). The goal of the
scheduler is to direct the receiver towards the radars so that (to dwell on the
radar) at exactly the time that the radar’s illumination line points towards the
receiver. In our system the scheduler executes the Earliest Deadline First (EDF)
scheduling policy. The outcome of this policy, however, depends on the output
of the controller, which tells the radar when this coincidence is expected, i.e.,
the time when the radar is illuminating in the direction of the receiver.

The system is stable (intuitively) if none of the radars is ignored for some pre-
specified time interval Bt. There are many definitions of stability in the control
literature. In this paper we use the stability in the sense of Lagrange.

A system is said to be “stable in the sense of Lagrange” [?] if for every initial
condition the Pdi(0)) such that the initial condition lies within a certain bound
(e.g.,

∑N
i=1 Pdi(0) ≤ α) there exists a bound B such that Pd ≤ B is satisfied

(note that B may depend on α). Clearly, stability in the sense of Lagrange is
simply a type of boundedness property. Typically, in practical applications, we
would like B to be as small as possible.

Lagrange stability only says that there exists a bound for the uncertainty tra-
jectories. A slightly stronger stability condition is that of uniform ultimate bound-
edness (UUB), where for every initial condition the trajectories are bounded, and
as time goes to infinity, they will all approach a B-neighborhood of the origin
where we know the bound B (e.g., it typically depends on the parameters of the
problem.

Note that if the scheduler has chosen a specific i (specific radar) for a long
enough time it may be possible to reduce Pdi to near one. When this happens
it normally does not make sense to keep the receiver focused on that radar

6

dwell-i/compute-CDW

/release-CDW

Idle
Computing

CDW

exit/CDW-i

Fig. 6. The Scheduler

(however, if it is a very high priority radar then we may want to maintain as
much information about it as possible). It is clear that to be able to achieve
boundedness, the scheduler cannot ignore any one radar for too long (i.e., the
“revisit time” for any one target cannot be too long) or its corresponding Pdi

will rise to a high value.
In this paper we present simulations of various scenaria. An example of one

such simulation is shown in Figure 8. This figure shows the performance of the
scheduling system when the gain of the controller (Kp) is set to 0.1. This figure
shows plots of two parameters: miss ratio (Pmi) for five radars, and probability
of detection (Pdi) the same these targets. The probability of detection is the
performance measure (QoS) of the whole system. This measure, as we stated
earlier in the paper, depends on a number of factors: the rotations of the radars,
the movent of the receiver platform, the decisions made by the scheduler and the
decisions made by the controller. Of particular interest are the decisions made
by the scheduler. However, since these decisions depend on the inputs from
the controller, the resultant performace depends on both the scheduler in the
controller. For this reason we showed the miss ratio in the left column of Figure
8 and the probability of detection in the right column of this figure. The miss
ratio tells us what percentage of the controller’s decisions were ignored by the
scheduling policy. In other words, even though the controller tells the scheduler
to schedule a specific radar at a specific time, the scheduler, due to the heavy
load (saturation) of the receiver, misses some of its requests.

4 Conclusions

As can be seen from Figure 8, the system is unstable. Only for targets 2 and 4
the probability of detection is stable. For the other three targets the performance

7

compute-dwell

compute-CDW

release-dwell

release-CDW

Idle

Computing
Control

Computing
Schedule

Fig. 7. The Computer

deteriorates with time. We ran numerous simulations of this kind. In most cases
the result was that the system was unstable. Only for special settings of the Kp

parameters could we gurantee the stability of the whole system.

Acknowledgments

This research was partially supported by a grant from the Defense Advanced
Research Projects Agency.

8

0 200 400 600
0

0.5

1
0

0 200 400 600
0

0.5

1

0 200 400 600
0

0.5

1

0 200 400 600
0

0.5

1

0 200 400 600
0

0.5

1

0 200 400 600
0.8

0.9

1
0

0 200 400 600
−1

0

1

0 200 400 600
0

0.5

1

0 200 400 600
0

0.5

1

0 200 400 600
0.5

1

Fig. 8. Simulation Results for Kp = 0.1 for five radars. The left column shows Miss
Rate (dwells requested by the controller, but missed by the scheduler. The right column
represents probability of detection of radar illuminations.

