Formal Verification of UML Diagrams:
A First Step Towards Code Generation

Jeffrey Smith!, Mieczyslaw Kokar? and Kenneth Baclawski?

1 Mercury Computer Systems, Inc.
2 Northeastern University

Abstract. UML diagrams can be used for code generation. Such code should
carry the meaning embedded in a diagram. The goal of this paper is to show a
process in which such translation can be formally verified. To achieve this goal,
the whole checking process has to be formalized. In this paper we show such a
verification process and example.

Keywords - UML specification, formalization and translation, formal methods.

1 Introduction

UML diagrams are translated into code by various CASE tools. However,
(1) the verification of the translation correctness is left to either the tool
developers or the programmers, (2) CASE tools don’t enforce a complete
set of UML syntax, let alone semantics and (3) CASE tools are only capa-
ble of translating header files and constructors/destructors to a program-
ming language. We are interested in translators that are provably correct
with respect to the intended meaning of the UML language, i.e., such that
preserve the intended meaning embedded in UML diagrams representing
various program specifications.

Translation of UML diagrams into code may be a multi-step process [1,
2]. In order to make sure that the whole translation preserves the meaning,
each of the single steps must obey such a constraint. If a specification is
expressed in a formal specification language, formal methods can be used
to check the correctness of such translation. However, in spite of great
strides that the UML specification contributors have made in defining

semi-formal semantics, with a combination of meta-language, constraint
specification and text, in the UML Semantics Guide, the UML is still not a
formal language. Improvements in these semi-formal UML descriptions are
needed to convey a rigorous semantics and to provide tool support to verify
UML diagrams against an unambiguous specification of UML semantics.
Moreover, since the UML Semantics Guide uses UML to define a meta-
model of the UML, a formal verification process needs to be established.

In Section 2, we outline a process for formally checking the correct-
ness of a UML diagram translator. We then give a specific example for
each step of the verification process. We focus on the formalization of the
UML’s association and aggregation. In Section 3, we show partial formal-
ization of these concepts in the Slang formal method language. Then, in
Section 4, we show an example of a UML diagram that uses associations
and aggregations as well as the result of a translation of the diagram into
Slang. Finally, in Section 5, we show how to verify that an automatically
generated Slang form of this UML diagram is consistent with our formal-
ization of UML Semantics. Related UML formalization research is referred
to in Section 6. In Section 7, we summarize our conclusions and point to
directions for future investigations of the UML translation verification
problem.

2 UML Translation Verification Process

Our UML translation verification process is shown in Figure 1. Although
the Slang formal methods language [14] is used to give formal specification
language examples and references, the concepts described in this paper can
be attributed to any algebraic/category theory based formal language.
Since UML is described in UML, Transition 1, GT (M ME), describes the
formalization of the UML meta-model in Slang. It consists of two parts.
First, we show some of the rules that we used in the formalization and
then a partial formalization of the meta-model is presented. These rules
significantly depend on the structure of the selected specification language
(Slang). Transition 2, TR(ME), shows the tool support needed to auto-
matically translate UML applications (described as the UML Graphical

Domain) to Slang. Transition 3 represents the verification of the correct-
ness of the translation. Here we check that instances of the Slang form
of the UML Graphical Domain translation preserve the UML semantics
captured in Transition 1. To explain this step, we first view both the
specification of the UML meta-model and of any UML diagram as a pre-
sentation of a theory (in Slang). Our goal is to ensure that the class of
models of the theory, obtained as a translation of any UML diagram, is a
subclass of models of the theory of the UML meta-model (cf. [9]). In order
to show this, we need to show that for each such translation there exists
a morphism from the UML meta-model theory to the theory representing
a given UML diagram. Transition 4, marked in Figure 1 as Gen(MFE), is
a mapping of all possible UML diagrams that can be produced within a
UML CASE tool into the UML meta-model. Gen maps each UML model
element that appears in a particular diagram to its counterpart in the
UML meta-model. We do not discuss this transition in this paper.

UL Graphical Domain Gen(ME) UML Semantics (UM
(Application in UML Forrm) 4. Mapping to UML Meta-m odel

Semantics Guide Contents)

TR(ME ANVE
2. Translatjon to)Slang 1 Fcncn;gj(zl‘ the UEML

h 4 h 4
UL Formal Semantics

Ul Formal Domain

3. Finding morphisms (UML Semantics in Slang

CApplication in 3lang Form! Form)

Fig. 1. Translation Verification Process

An entire UML formalization is too lengthy a topic for this paper. A
complete treatment is given in [12]. We will describe a formalization of ag-
gregation and association, not only to show an example of our process, but
also to contribute a semantic distinction between these two relationships
since “there is no single accepted definition of the difference between ag-
gregation and association used by all methodologists” [8]. Figure 2 shows
the subset of the UML Semantics Guide Core Package-Relationships Dia-
gram [3], that we will address in this paper.

Our approach has been to formalize UML in category theory in a man-
ner that closely follows the UML Semantics Guide. Alternative approaches
generally formalize by mapping concepts in UML to a priori constructs
such as “has-a” and “part-of” that don’t necessarily follow UML very
closely for two reasons: (1) UML treats aggregation as a property of one
of the association ends of an association rather than as a separate mod-
eling primitive and (2) there are several notions of UML aggregation, but
just one “part-of” modeling primitive. The following sections will trace
each of the steps of Figure 1 for a UML application, demonstrating how
we develop a Slang form of UML semantics and verify that the translation
of a UML diagram preserves the UML semantics.

ModelElement

Namespace

GeneralizableElement

isRoot: Boolean [Association
isLeaf: Boolean
ishbetract: Boolean

1

cormection [2..* {ordered}
type associationEnd| AssociationEnd
1 * | isMavigable: Boolean
specification panticipant jsOrdered: Boolean

* * | aggregation: AgpregatienKind
multiplicity: Multiplicity
changeable: ChangeableKind
targetScope: Scope

Classifier

Fig. 2. Aggregation and Association Portion of UML Core Package-Relationships Diagram

3 UML/Slang Formalization

This section describes how to formalize the UML Semantics Guide in an
algebraic/category theory based specification language. UML to formal
specification translation is broken into a modular set of rules to break this
large problem into chunks.

3.1 Specifications in Slang

The following, from [13], gives a brief overview of specifications expressed
in Slang. Specifications are the fundamental objects in Slang. A specifica-
tion is viewed as a presentation or description of a theory. A specification
(termed in Slang as spec) is a finite expression that describes a potentially
infinite set of strings of symbols that are within the language of a theory
and a subset of this set of strings that are valid within a theory. Legal
sentences are described by signatures. Signatures are made up of sorts
(a declaration of the classes of objects in the specification), ops (ops are
short for operations - a declaration of named constants that denote objects,
functions and predicates of specified sorts) and sort azioms (an assertion
of the equivalence between a primitive sort and a constructed sort). The
valid sentences are specified by the axioms that involve both sorts and op-
erations. Additionally, specs can include theorems, i.e., sentences that can
be logically derived from the axioms. Specifications form a category called
Spec. The objects in this category are specifications (specs) and arrows
are such morphisms that map sorts to sorts, operations to operations and
axioms to theorems.

Specifications are either given as basic specifications of these sorts, ops,
axioms and theorems, or built with translate, import or colimit specification-
building operations. Translate creates a copy of a specification, some-
times renaming some components. Import enriches a specification with
new sorts, operations, axioms and theorems - similar to a programming
language include. A colimit is used to combine specifications, taking a dia-
gram of specifications as an input and yielding a specification that contains
all the elements of the specifications in the diagram.

3.2 Background Formalization Rules

We begin with some of the background formalization rules used by the
subsequent formalizations of associations and aggregations.

Object - Spec Rule. FEvery Model Element in UML, specified in the
UML Semantics Guide, translates to a spec containing a sort, both having
the same name as the Model Element. Import a CLASS spec if the Model
Element represents a class and an OBJECT spec if the Model Element
represents an object. To make a lexical distinction between a spec and a
sort name, the sort name begins with a capital letter followed by lower
case for the remaining characters of the name, while the spec name uses
all upper case letters.

There are only two choices for an object in a specification language
supporting category theory: a diagram or a spec. Of these two choices,
only spec supports the import declarations we need to support a modular
translation. The spec choice also permits more degrees of freedom than
diagram because one can also associate operations (and other constructs
not possible with diagrams) with a spec.

OCL Constraints to Op/Axiom Rule. For each OCL constraint, add
an associated op in the spec corresponding to the UML object that contains
this OCL constraint. Specify the constraint in an axiom associated with the
op.

A constraint defines a relation. In Slang, relations are defined as ops
with Boolean as their domain. For this reason, in order to specify an OCL
constraint in Slang, we first have to specify a Boolean op and then specify
the constraint as an axiom associated with this op.

3.3 UML Association Formalization Rule

Association - Association Instance Spec Rule. Translate each asso-
ctation end of an association to a separate instance of an association end
spec, filling in each of the association end constraints as ops and axioms
of the association end spec. Translate each classifier of an association to

a separate instance of an classifier spec, filling in each of the classifier
constraints as ops and axioms of the classifier spec. Translate each as-
sociation to a separate instance of the association spec, identifying the
classifiers associated with each association end as the source and target of
the association. Finally, form a colimit of these association ends, classi-
fiers and association specs into ASSOCIATION-CLASSIFIER-COLIMIT
spec, filling in the constraints, associated with association end, classifier
and association relations, as ops and azxioms.

The motivation to use this translation rule is to closely resemble the
UML Semantics Guide, where an association is a set of tuples relating two
classifiers. An association consists of at least two association ends, each of
which represents a connection of an association to a classifier. This trans-
lation rule uses the UML Semantics Guide Core Meta-Model structure.
As a result, associations and association ends are also translated to specs.
This seems apt since we're translating objects to specs and Associations
and AssociationEnds are meta-objects in Figure 2.

The formalization of the ASSOCIATIONEND, CONNECTION and
ASSOCIATION specs that will be used in an example that follows, is
shown in Specification 1.

Aggregation - Aggregation Instance Spec Rule. Treat aggregation
as an association, labeling the association end corresponding to the aggre-
gate end (the side with the hollow or filled in diamond) with the type of
aggregation, according to the UML Semantics Guide.

An UML aggregation is a “part-of” relationship. If B is a part of A,
then B belongs to A. This is contrasted with an association, or “is-a” rela-
tionship, where if B is associated with A, then the B-A relationship belongs
to the (super) model element that includes this relationship. Nevertheless,
the UML Semantics Guide does not include a meta-model element called
Aggregation. Instead, it specifies aggregation as a special type of associ-
ation. In UML, aggregation is an attribute of the association ends that
make up an association. This attribute can take one of three possible val-
ues: aggregate, composite or none. We formalize this concept accordingly.
In our Association-Association Instance translation Rule, an aggregation

is an association where one of the ends of an association connection is
marked with the type of aggregation. It is marked as aggregate if the
other end, or part, may be contained in other aggregates. It is marked as
composite if the other end may not be part of any other composite. If it
is none, it means the association is not an aggregation. Since our main
emphasis in this paper is to show the formalization process rather than the
formalization itself, not all of the details of the UML aggregation concept
are included in Specification 1.

Specification 1 (Partial Formalization of the UML Meta-Model)

spec PAIR is

sorts Pair, Left, Right

op make-pair: Left, Right -> Pair

op left: Pair -> Left

op right: Pair -> Right

axiom (equal (left (make-pair d e)) d)

axiom (equal (right(make-pair d e)) e)

constructors {make-pair} construct Pair

theorem (equal p (make-pair (left p) (right p)))
end-spec

spec MODELELEMENT is
sort ModelElement
op name : ModelElement -> String
axiom name is (fa (a: ModelElement b: ModelElement)
(equal (name a) (name b)))
end-spec

spec NAMESPACE is
sort Namespace
op name : Namespace -> String
axiom name is (fa (a: Namespace b: Namespace)
(equal (name a) (name b)))
end-spec

spec GENERALIZABLEELEMENT is

sort GeneralizableElement

op name : GeneralizableElement -> String

axiom name is (fa (a: GeneralizableElement b: GeneralizableElement)
(equal (name a) (name b)))

op isRoot : GeneralizableElement -> Boolean

axiom isRoot is (fa (a: GeneralizableElement b: GeneralizableElement)
(equal (isRoot a) (isRoot b)))

op isLeaf : GeneralizableElement -> Boolean

axiom isLeaf is (fa (a: GeneralizableElement b: GeneralizableElement)
(equal (isLeaf a) (isLeaf b)))

op isAbstract : GeneralizableElement -> Boolean

axiom isAbstract is (fa (a: GeneralizableElement b: GeneralizableElement)
(equal (isAbstract a) (isAbstract b)))
end-spec

spec CLASSIFIER is
sort Classifier
op name : Classifier -> String
axiom name is (fa (a: Classifier b: Classifier)
(equal (name a) (name b)))
op isRoot : Classifier -> Boolean
axiom isRoot is (fa (a: Classifier b: Classifier)
(equal (isRoot a) (isRoot b)))
op isLeaf : Classifier -> Boolean
axiom isLeaf is (fa (a: Classifier b: Classifier)
(equal (isLeaf a) (isLeaf b)))
op isAbstract : Classifier -> Boolean
axiom isAbstract is (fa (a: Classifier b: Classifier)
(equal (isAbstract a) (isAbstract b)))
end-spec

spec ASSOCIATION is

import CLASSIFIER

sort Association

op name : Association -> String

axiom name is (fa (a: Association b: Association)
(equal (name a) (name b)))

op isRoot : Association -> Boolean

axiom isRoot is (fa (a: Association b: Association)
(equal (isRoot a) (isRoot b)))

op isLeaf : Association -> Boolean

axiom isLeaf is (fa (a: Association b: Association)
(equal (isLeaf a) (isLeaf b)))

op isAbstract : Association -> Boolean

axiom isAbstract is (fa (a: Association b: Association)
(equal (isAbstract a) (isAbstract b)))

op make-association: Classifier, Classifier -> Association

op first: Association -> Classifier

op second: Association -> Classifier

axiom (equal (first (make-association d e)) d)

axiom (equal (second(make-association d e)) e)

constructors {make-association} construct Association

theorem (equal p (make-association (first p) (second p)))

end-spec

spec ASSOCIATIONEND is

sorts AssociationEnd

op isNavigable: AssociationEnd -> Boolean

axiom isNavigable is (fa (a: AssociationEnd b: AssociationEnd)
(equal (isNavigable a) (isNavigable b)))

op isOrdered: AssociationEnd -> Boolean

axiom isOrdered is (fa (a: AssociationEnd b: AssociationEnd)
(equal (isOrdered a) (isOrdered b)))

op name: AssociationEnd -> String

axiom name is (fa (a: AssociationEnd b: AssociationEnd)
(equal (name a) (name b)))

op aggregate: AssociationEnd -> String

axiom aggregate is (fa (a: AssociationEnd b: AssociationEnd)
(equal (aggregate a) (aggregate b)))

op multiplicity: AssociationEnd -> Nat, Nat

axiom multiplicity is (fa (a: AssociationEnd b: AssociationEnd)
(equal (multiplicity a) (multiplicity b)))

op changeable: AssociationEnd -> String

axiom changeable is (fa (a: AssociationEnd b: AssociationEnd)
(equal (changeable a) (changeable b)))

end-spec

spec ASSOCIATION-CLASSIFIER-COLIMIT is
import colimit of diagram
nodes T1: TRIV, T2: TRIV, T3: TRIV, T4: TRIV,
T56: TRIV, T6: TRIV, T7: TRIV, T8: TRIV,
P1: PAIR, P2: PAIR, P3: PAIR, P4: PAIR,
C1: CLASSIFIER, C2: CLASSIFIER,
AE1: ASSOCIATIONEND, AE2: ASSOCIATIONEND, ASSOCIATION
arcs
T1 -> P1: {e -> Right},
T2 -> P1: {e -> Left},
T1 -> C1: {e -> Classifier},
T2 -> AE1: {e -> AssociationEnd},
T3 -> P2: {e -> Right},
T4 -> P2: {e -> Left},
T3 -> AE1: {e -> AssociationEnd},
T4 -> ASSOCIATION: {e -> Association},
T5 -> P3: {e -> Right},
T6 -> P3: {e -> Left},
T5 -> ASSOCIATION: {e -> Association},
T6 -> AE2: {e -> AssociationEnd},
T7 -> P4: {e -> Right},
T8 -> P4: {e -> Left},
T7 -> AE2: {e -> AssociationEnd},
T8 -> C2: {e -> Classifier}
end-diagram
% The AssociationEnds must have a unique name within the association
axiom OCL1 is (fa(a: AEl.AssociationEnd b: AE2.AssociationEnd)
(implies (equal (AEl.name a) (AE2.name b)) (equal AEl.a AE2.b)))
% At most one AssociationEnd may be an aggregate or a composite
axiom OCL2 is (fa(a: AEl.AssociationEnd b: AE2.AssociationEnd)
(or (implies (or (equal (AEl.aggregate AEl.a) "aggregate")
(equal (AEl.aggregate AEl.a) "composite"))
(equal (AE2.aggregate AE2.b) "none"))
(implies (or (equal (AE2.aggregate AE2.b) "aggregate")
(equal (AE2.aggregate AE2.b) "composite"))
(equal (AEl.aggregate AEl.a) "none"))))
% The connected Classifiers of the AssociationEnds should be included
% in the Namespace of the association

axiom OCL3 is (fa(a: Association)
(and (equal C1.Classifier (first a)) (equal C2.Classifier (second a))))
% No opposite AssociationEnds may have the same name within the Classifier
axiom OCL4 is (fa(a: Cl.Classifier b: C2.Classifier)
(implies (equal (Cl.name a) (C2.name b)) (equal Cl.a C2.b)))
end-spec

4 UML Graphical to Formal Domain Translation

The UML Graphical to Formal Domain translation was depicted as Tran-
sition 2 in Figure 1, where we provide support to translate a UML appli-
cation to a Slang spec, following the previously defined translation rules.
In this section we show an example of a UML diagram (Figure 3) and
parts of the spec that is the result of the translation. In the example we
have a Lecture, which is a collection of Student, ordered by ID. There is a
one-to-one association with a Course, depending on the Lecture level.

Presentation Lt Course
—
T /

Lecture T

Student

Fig. 3. UML Association and Aggregation Translation Example

The translation of this UML diagram to Slang, according to the prior
semantic formalization rules, is shown below.

Specification 2 (Example: UML Association and Aggregation Translation)
spec LECTURE is

sort Lecture

op name: Lecture -> String

axiom fa(a: Lecture) name(a) = "Lecture"

op isLeaf: Lecture -> Boolean

axiom fa(a: Lecture) isLeaf(a) = true
end-spec

spec STUDENT is
sort Student
op name: Student -> String

axiom fa(a: Student) name(a) = "Student"

op isLeaf: Student -> Boolean

axiom fa(a: Student) isLeaf(a) = true
end-spec

spec LECTURE-AE-STUDENT is
sort Lecture-AE-Student
op name: Lecture-AE-Student -> String
axiom fa(a: Lecture-AE-Student) name(a) = "student_collection"
op multiplicity: Lecture-AE-Student -> Nat, Nat
axiom fa(a: Lecture-AE-Student) multiplicity(a) = (1,1)
op isNavigable: Lecture-AE-Student -> Boolean
axiom fa(a: Lecture-AE-Student) isNavigable(a) = true
op aggregate: Lecture-AE-Student -> String

axiom fa(a: Lecture-AE-Student) aggregate(a) = "aggregate"
op changeable: Lecture-AE-Student -> String
axiom fa(a: Lecture-AE-Student) changeable(a) = "none"

op isOrdered: Lecture-AE-Student -> Boolean
axiom fa(a: Lecture-AE-Student) isOrdered(a) = false
end-spec

spec STUDENT-AE-LECTURE is
sort Student-AE-Lecture, n
op name: Student-AE-Lecture -> String
axiom fa(a: Student-AE-Lecture) name(a) = "Student"
op multiplicity: Student-AE-Lecture -> Nat, Nat
axiom fa(a: Student-AE-Lecture) multiplicity(a) = (1,n)
op isOrdered: Student-AE-Lecture -> Boolean

axiom fa(a: Student-AE-Lecture) isOrdered(a) = true

op isNavigable: Student-AE-Lecture -> Boolean

axiom fa(a: Student-AE-Lecture) isNavigable(a) = true

op aggregate: Student-AE-Lecture -> String

axiom fa(a: Student-AE-Lecture) aggregate(a) = "none"

op changeable: Student-AE-Lecture -> String

axiom fa(a: Student-AE-Lecture) changeable(a) = "none"
end-spec

spec LECTURE-STUDENT-AGGREGATION is
import LECTURE, STUDENT
sort Lecture-Student-Aggregation

op name: Lecture-Student-Aggregation -> String

axiom fa(a: Lecture-Student-Aggregation) name(a) =
"Lecture-Student-Aggregation"

op isLeaf : Lecture-Student-Aggregation -> Boolean

axiom fa(a: Lecture-Student-Aggregation) isLeaf(a) = true

op isRoot: Lecture-Student-Aggregation -> Boolean

axiom fa(a: Lecture-Student-Aggregation) isRoot(a) = false

op isAbstract: Lecture-Student-Aggregation -> Boolean

axiom fa(a: Lecture-Student-Aggregation) isAbstract(a) = false

op make-association: Lecture, Student -> Lecture-Student-Aggregation

op first: Lecture-Student-Aggregation -> Lecture

op second: Lecture-Student-Aggregation -> Student

axiom first(make-association(d, e)) = d

axiom second(make-association(d, e)) = e

constructors {make-association} construct Lecture-Student-Aggregation

theorem p = make-association(first(p), second(p))
end-spec

spec LECTURE-STUDENT-AGGREGATION-COLIMIT is
import colimit of diagram
nodes T1: TRIV, T2: TRIV, T3: TRIV, T4: TRIV,
T56: TRIV, T6: TRIV, T7: TRIV, T8: TRIV,
P1: PAIR, P2: PAIR, P3: PAIR, P4: PAIR,
LECTURE, STUDENT, LECTURE-AE-STUDENT, STUDENT-AE-LECTURE,
LECTURE-STUDENT-AGGREGATION
arcs
T1 -> P1: {e -> Right},
T2 -> P1: {e -> Left},
T1 -> LECTURE: {e -> Lecture},
T2 -> LECTURE-AE-STUDENT: {e -> Lecture-AE-Student},
T3 -> P2: {e -> Right},
T4 -> P2: {e -> Left},
T3 -> LECTURE-AE-STUDENT: {e -> Lecture-AE-Student},
T4 -> LECTURE-STUDENT-AGGREGATION: {e -> Lecture-Student-Aggregation},
T5 -> P3: {e -> Right},
T6 -> P3: {e -> Left},
T5 -> LECTURE-STUDENT-AGGREGATION: {e -> Lecture-Student-Aggregation},
T6 -> STUDENT-AE-LECTURE: {e -> Student-AE-Lecture},
T7 -> P4: {e -> Right},
T8 -> P4: {e -> Left},
T7 -> STUDENT-AE-LECTURE: {e -> Student-AE-Lecture},
T8 -> STUDENT: {e -> Student}
end-diagram
axiom OCL1 is fa(a: Lecture-AE-Student, b: Student-AE-Lecture)
name(a) = name(b) => a = b
axiom OCL2 is fa(a: Lecture-AE-Student, b: Student-AE-Lecture)

((aggregate(a) = "aggregate") or (aggregate(a) = "composite") =>
(aggregate(b) = "none") or

(aggregate(b) = "aggregate") or (aggregate(b) = "composite") =>
(aggregate(a) = "none"))

axiom OCL3 is fa(a: Lecture-Student-Aggregation)
Lecture = first(a) & Student = second(a)

axiom OCL4 is fa(a: Lecture, b: Student)
name(a) = name(b) => a = b
end-spec

5 Verification of UML Graphical Domain
Translation

As we stated in Section 2, in order to ensure the correctness of the trans-
lation we need to show that there is a morphism between the UML meta-
model and the translation of a diagram. More specifically, we need to show
morphisms between specs of the UML meta-model elements that are asso-
ciated with any model elements of a given UML diagram through the Gen
mapping and specs that resulted from the translation of a UML diagram.

In this section, in order to exemplify this step, we follow one thread
of such reasoning. Specifically, we focus on the Lecture-Student aggrega-
tion (Figure 3). This aggregation (in UML it is an association) is mapped
through Gen directly into the Association element of the UML meta-model
and indirectly into AssociationEnd and Classifier. These meta-model ele-
ments are associated (through GT') with a number of specs in the Slang
representation of the UML semantics: ASSOCIATION, ASSOCIATIO-
NEND, CLASSIFIER, ASSOCIATION-CLASSIFIER-COLIMIT. In or-
der to prove the correctness of a translation, we need to show morphisms
from all of these specs into the specs that are the result of the translation
(T'R) of the Lecture-Student aggregation into its Slang representation.

To show a morphism, we need to perform two steps. First, we need
to map sorts to sorts and operations to operations consistently. Then we
need to map axioms of the UML meta-model specs into theorems in the
translation, i.e., we need to formulate and prove appropriate theorems
about the specs of the translation. The first step can be supported by
the CASE tool to check the type compatibility of the mappings. For the
example of the Lecture-Student aggregation, the morphisms expressed in
Slang and checked by Specware are shown below.

Specification 3 (Morphisms)

morphism AE-LAS: ASSOCIATIONEND -> LECTURE-AE-STUDENT is
{AssociationEnd -> Lecture-AE-Student}

morphism AE-SAL: ASSOCIATIONEND -> STUDENT-AE-LECTURE is
{AssociationEnd -> Student-AE-Lecture}

morphism A-LSA: ASSOCIATION -> LECTURE-STUDENT-AGGREGATION is
{Association -> Lecture-Student-Aggregation,
Classifier -> Lecture,
Classifier -> Student}

morphism AC-LCAS: ASSOCIATION-CLASSIFIER-COLIMIT ->
LECTURE-STUDENT-AGGREGATION-COLIMIT is

{Classifier -> Lecture, Classifier -> Student,

AssociationEnd -> Lecture-AE-Student, AssociationEnd ->
Student-AE-Lecture,

Association -> Lecture-Student-Aggregation}

The second step, i.e., axiom mapping, is more difficult. As an example
take the axiom multiplicity associated with AssociationEnd:

op multiplicity: AssociationEnd -> Nat, Nat
axiom multiplicity is (fa (a: AssociationEnd b: AssociationEnd)
(equal (multiplicity a) (multiplicity b)))

This axiom, through morphisms AEF — LAS and AE — SAL, must
map into one theorem in LECTURE-AE-STUDENT and one theorem in
STUDENT-AE-LECTURE. In LECTURE-AE-STUDENT, the theorem

1S:

theorem multiplicity-l-ae-s is (fa (a: AssociationEnd)
(equal (multiplicity a) (1,1)))

The proof of this theorem is straightforward. Since the axiom states
that for any a the multiplicity is (1, 1), i.e., it is constant, then it is true
for any substitution of variables, which includes a and b.

To complete the proof of this example, one would need to check all of
the axioms of all of the associated specs. This would be a time consuming
process. For this reason, we have an automatic translator T'R which is
verified to be provably correct [12], i.e., for any UML diagram it will
produce a collection of specs for which all such morphisms as shown above
exist.

6 Other Research on UML Formalization and
Translation

Research on the formal semantics of the UML has been performed on
many levels. Much of this research performed either UML formalization
or translation (to a verifiable specification or executable language), but
seldom both. For instance, in the first category, Cheng et al [4,15,16]
have been extending their ability to construct algebraic specifications of
OMT object model diagrams to UML. In Lano et al [10], an axiomatic
semantic representation of UML is given in terms of theories that are
used to represent classes, instances, associations and general submodels of
a UML model.

The semantics of UML research was also presented in [7], where UML
constraints were represented in Z. Although the Z specifications are ver-
ifiable, this research did not link directly to a CASE tool environment
nor automate the specification generation. Robbins et al. [11] approach
was to integrate UML with the semantics of other Architectural Design
Languages (ADLs) by adding ADL extensions to UML using Stereotypes.
This research generated an efficient executable language, but used a sim-
ple, partial and inconsistent view of UML meta-model, counting on other
research to perform the UML formalization.

In addition to the translation from UML to Slang, Smith and DelL.oach
have built a translator that automatically translates from UML directly
to O-Slang [6] based on an OMT theory-based object model [5] in the
process of being extended to UML. O-Slang is an object-oriented form of
Slang that DeLoach had built in [5]. This translation tool includes both
static class and behavior (state) translation.

7 Conclusions and Future Research

In this paper, we showed a process for a formal verification of a transla-
tion of UML diagrams into a formal method language. Such a verification
process is a first step of a larger task of translation of UML diagrams
into provably correct code. While methods for generating provably correct

code from formal specifications are known (e.g., refinement), it is not clear
how to translate UML diagrams into a formal specification language. The
difficulty of this step stems from various sources: UML is not a formal
specification language, UML is defined in UML, the definition provides a
meta-model of UML.

Our process consists of four steps: mapping of UML diagrams into the
UML meta-model, specifying the UML-metamodel in Slang, developing
an automatic translator from UML diagrams to Slang, and finally proving
that the translator is provably correct (i.e., for each possible translation
there is a morphism from the specification of the UML meta-model to
the translation of the diagram). In this paper, we outlined the process,
showed partial formal specifications of the UML meta-model, showed an
example of a translation of a diagram, and showed an example of a proof
that would need to be carried out for each translation to verify that the
translation is provably correct. We also indicated where a (formal) CASE
tool can be used in the verification process.

The formalization of the UML meta-model given in this paper is a
subset of a larger research effort which currently includes only part of the
Foundation Package from the UML Semantics Guide. For instance, we
showed how to combine specifications of meta-model elements into larger
specifications (see ASSOCIATION-CLASSIFIER-COLIMIT.) The rest of
the Core Package Diagram can be combined in a similar manner using the
approach presented in this paper. The next step would be to include all of
the UML diagrams, OCL constraints and textual descriptions of the UML
semantics.

References

1. K. Baclawski, S. DeLoach, M. Kokar and J. Smith, Object-Oriented Parsing and Transfor-
mation, Seventh OOPSLA Workshop on Behavioral Semantics of Object Oriented Busi-
ness and Systems Specifications, 1998.

2. K. Baclawski, S. DeLoach, M. Kokar and J. Smith, Object-Oriented Transformation, pend-
ing publication, Kluwer Publishing.

3. G. Booch, J. Rumbaugh and I. Jacobsen. UML Semantics, Version 1.1, Rational Software
Corp., 1997.

4. R. Bourdeau and B. Cheng. A Formal Semantics for Object Model Diagrams, IEEE Trans-
actions on Software Engineering, 21(10):799-821, 1995.

10.

11.

12.
13.
14.
15.

16.

S. A. DeLoach. Formal Transformations from Graphically-Based Object-Oriented Repre-
sentations to Theory-Based Specifications, PhD Thesis, Air Force Institute of Technology,
June 1996, PhD Dissertation.

S. DeLoach, T. Hartrum and J. Smith. A Theory-Based Representation for Object-
Oriented Domain Models, IEEE Transactions on Software Engineering, 1999. (to appear).
A. Evans, R. France, K. Lano and B. Rumpe The UML as a Formal Moelling Notation,
PUML Working Group, 1998.

M. Fowler. UML Distilled, Addison Wesley, 1997.

J. A. Goguen and R. M. Burstall, Some Fundamental Algebraic Tools for the Semantics of
Computation, Part I: Comma Categories, Colimits, Signatures and Theories, Theoretical
Computer Science, vol. 31, 1984, pp. 175-2009.

K. Lano and J. Bicarregui. Formalising the UML in Structured Temporal Theories, Sev-
enth OOPSLA Workshop on Behavioral Semantics of Object Oriented Business and Sys-
tems Specifications, 1998.

J. Robbins, N. Medvidovic, D. Redmiles and D. Rosenblum. Integrating Architecture De-
scription Languages with a Standard Design Method, White paper based on work spon-
sored by NSF grants CCR-9924846 and CCR~9701973 and DARPA, RL and USAF, Uni-
versity of CA, Irvine.

J.Smith. UML Formalization and Transformation, Ph.D. Thesis, Notheastern University,
College of Engineering, December 1999.

Specware Language Manual, Version 2.0.3, 1998.

R. Waldinger et al. Specware Language Manual: Specware 2.0.8, 1998.

E. Wang, H. Richter and B. Cheng. Formalizing and Integrating the Dynamic Model within
OMT, IEEE International Conference on Software Engineering, 1997.

E. Wang, B. Cheng. Formalizing and Integrating the Functional Model into Object

