
Control Theory-Based Foundations
of Self-Controlling Software

MieczysÃlaw M. Kokar
Department of Electrical and Computer Engineering,

Northeastern University

Kenneth BacÃlawski
College of Computer Science,

Northeastern University

Yönet A. Eracar
Department of Mechanical, Industrial and Manufacturing Engineering,

Northeastern University

1



Abstract

In spite of the obvious analogy with control systems, the basic paradigm of
control has not found its place as a first-class concept in the area of software
engineering. The controller concept has been used in software engineering as
an architectural style and also as a design pattern. However, the architectural
style only considers the possibility that the controller would be implemented
in software, while the possibility that the plant itself might be software is
not considered. Furthermore, this architectural style does not go beyond the
basic feedback loop model; neither adaptive nor reconfigurable control models
are considered. The controller design pattern does consider the possibility
of a software plant, but it only uses the open-loop model: feedback is not
considered at all.

We propose a new paradigm in the development of software in which the
issue of self-control of software is addressed explicitly and systematically in
the software development process. This new paradigm combines the advan-
tages of control theory and software engineering. A series of progressively
more sophisticated software models are introduced, based on corresponding
models from control theory. The essence of a control model is one or more
feedback loops; we discuss the various loops that occur for software systems.
We then introduce a new model called the Self-Controlling Software Model
that supports three levels of control: feedback, adaptation and reconfigura-
tion.

2



Control and adaptation embedded into algorithms are commonplace in
software systems. For example,

• Software for dynamic adjustments of the buffering strategy in a database
management system;

• Routing algorithms for networks;

• Load balancing algorithms for distributed computer systems;

• Graphical User Interfaces (GUI) that adapt to a specific user;

• Caching strategies for memory management in operating systems.

The main ideas of the control-theory based paradigm for self-controlling
software are:

• The basic function of the software system is regarded as a Plant to be
controlled.

• The behavior of the Plant and the Environment is modeled as a dynamic
system.

• Measurable inputs to the Plant are identified and split into control inputs
and disturbances. Control inputs are used for controlling the behavior
of the Plant, while disturbances alter the behavior of the Plant in an
unpredictable way.

• An additional subsystem is added for changing the values of the control
inputs to the Plant, called the Controller subsystem.

• Yet another subsystem can be added for computing feedback, called
the Quality of Service (QoS) subsystem. This feedback is used by the
Controller to compute control inputs.

3



The first control approach we consider is called open-loop control. In this
approach, the control input value is selected according to a control law that
calculates the control input based upon the values of other inputs. The
control law is part of the Controller. The open-loop control model splits the
system into a Plant and Controller.

Θ

²²

BC
GF
@A

//

Environment

Controller
α = f(Θ)

α // Plant
δ //

Figure 1: Open Loop Model

4



The next example of a control model is the Closed-Loop or Feedback Control
Model. In this model the output of the Plant is explicitly and immediately
fed back to the Controller as shown in Figure 2.

Θ
²²

Environment

goal
//
Controller

α // Plant
δ //EDBC@AGF //

Figure 2: Conventional Feedback Control Architecture

5



In some cases this value can be computed as a function of input and
output variables. In some other cases it might take an external input (e.g.,
from the user) and then compute the value of feedback based on all available
information. In this model, the Controller uses the feedback produced in the
QoS to control the Plant. This model is shown in Figure 3.

Θ
²²

δ̄
²²

Environment

goal
//
Controller

α // Plant
δ // QoS

QoS
//ED

BC@AGF //

Figure 3: Feedback Model with Quality of Service Subsystem

6



Figure 4 shows the software model based on the indirect adaptive control
approach. This software model includes two subsystems in addition to those

Θ
²²

δ̄
²²

Environment

Goal//
Controller

α //ED
@A

//

Plant
δ //EDBC

GF²²
QoS

QoS
//ED

BC@A

GF // ED
BC

ooController
Designer

K

OO

Model
Estimator

oo

Figure 4: Indirect Adaptive Control Model

that appear in the feedback control model: Model Estimator and Controller
Designer. In this model, the Controller parameters are adjusted based upon
the Plant’s model that is being updated during execution.

7



Adaptive control, although more flexible than conventional feedback con-
trol, has its own limitations. Reconfigurable control is a relatively new model
in the design and implementation of control systems. The driving force be-
hind the development of this approach was the need for controlling Plants
that change their dynamics structurally in an unpredictable fashion. The
software model based upon a reconfigurable Controller is represented in Fig-
ure 5.

Θ
²²

δ̄
²²

Environment

Goal//
Controller

α //ED
@A

//

Plant
δ //EDBC

GF²²
QoS

QoS
//ED

BC@A

GF // ED
BC

ooController
Selector

OO

Model
Selector

oo

/. -,
() *+Controller
Database

OO

/. -,
() *+Model
Database

OO

Figure 5: Reconfigurable Control Model

8



We now introduce a software control model that combines and generalizes
the features of the various control models introduced above. This new model
is called the Self-Controlling Software Model, as shown in Figure 6.

Θ
²²

Feedback Loop

δ̄
²²

Controller //ED
@A

//

Plant
δ

//EDBC
GF
²²

QoS //ED
BC

oo

BC

EDGF

²²

Controller
Designer

OO

Evaluatoroo

²²

Adaptation Loop

Reconfigurer
XY

_^

goal

//

OOÂ
Â

Â

Â@A
_ _ _ _ _ _ _ _

OOÂ
Â

Â »¼

ÂÁÂ
Â

Â

Â

Â

Â

Â

Â

Â

//___

BC
________

OOÂ
Â

Â

Â

Â

Â

Â

Â

Â

Reconfiguration Loop

/. -,
() *+Specification
Database

OO

/. -,
() *+Component
Database

ii

// Information Transfer

//______ Reconfiguration

Figure 6: Self-Controlling Software Model

9



The structure of this model can be best described by the three loops each
of which represents a different time-scale for control activity:

1. The feedback loop in which the Controller sets parameters to the Plant
based upon goal and feedback received from the Quality-of-Service sub-
system.

2. The adaptation loop in which the Evaluator evaluates the behavior and
performance to determine whether the model of the Plant is appropriate,
and adapts the model, which in turn triggers a change in the control law.

3. The reconfiguration loop, which is a drastic and relatively costly action.
This action is performed by the Reconfigurer on request of the Evaluator.
The reconfiguration can involve structural changes in the Plant model,
Quality-of-Service, Evaluator, Controller, Controller Designer, goal, or
even the Plant. We assume that the Reconfigurer itself remains fixed.
The Reconfigurer in its decision making process uses the Specification
Database, which contains a high-level system requirement, including a
high-level goal. In the reconfiguration planning process it uses the Com-
ponent Database to assemble various elements of the system.

10



Issues in the Use of Control Theory

for Software Engineering

Controllability This is the ability to steer the system (Plant) in desired
directions.

Observability This refers to the ability to determine the (initial) state of a
system from measurements of the system.

Stability In simple terms it is a property of the system which ensures that
small changes (disturbances) in an initial state (also called an equilib-
rium state or invariant set) eventually have negligible effects upon the
behavior of the system.

Robustness This property is the ability of the controller to achieve its ob-
jectives even if there are large, unanticipated variations in the Plant.

Generality The generality of any system is limited by its knowledge base.
The Self-Controlling Software Model is amenable to any number of con-
trol strategies, such as expert control, neural and fuzzy control, hybrid
control and learning control.

Autonomy Since a self-controlling system performs reconfiguration without
direct supervision, it exhibits a great deal of autonomy.

Chattering When the environment happens to reach a state that is on the
boundary between two control regimes, the system may reconfigure re-
peatedly between two or more configurations.

Scheduling The scheduling of components is important for any system model.

Proactive Reconfiguration

Efficiency The redundancy necessary for self-adaptability adds a cost to the
system.

11



Conclusion

With very few exceptions, reconfiguration of a software system requires the
system to be shut down and must be supervised manually. Software that can
be reconfigured or even just upgraded at runtime is unusual, and research
on this issue is relatively recent. The systematic use of the control theory
based paradigm can lead to software development models that could alter
this situation by making it much easier to design and develop software with
the following capabilities:

Capability Modules in Figure 6

Knows its purpose and structure. Controller and
Controller Designer

Evaluates its behavior and QoS and Evaluator
performance at runtime.

Can reconfigure itself at runtime
in response to a variety of criteria Reconfigurer using
such as a failure to accomplish its Component Database
objectives due to changes in the
inputs obtained from the environment.

Can generate code at runtime to match Reconfigurer using
a component with another component Specification Database
that needs to use it.

12


