
KEYNET: An architecture and protocol for

high-performance semantically rich information

retrieval

Kenneth Baclawski

�

and J. Elliott Smith

Northeastern University

College of Computer Science

Boston, Massachusetts 02115

(617) 373-4631

FAX: (617) 373-5121

fkenb,esmithg@ccs.neu.edu

January 25, 1995

Abstract

We propose an architecture and protocol for semantically rich information retrieval

from a subject-speci�c corpus of information objects. The technique assumes that

information objects have been labeled using small directed graphs, called content labels.

A content label subsumes the role of an abstract. Both content labels and queries are

required to conform with a general framework (ontology) for the subject area. Our

method avoids explicit isomorphism testing by decomposing queries into fragments of

small maximum size and using tables of these fragments to accomplish comparisons.

The index structure is compatible with distributed processing architectures and scales

up well, allowing very large collections to be searched very quickly using semantically

complex queries.

1 Introduction.

With the expansion of the Internet and the development of new \Information Highways,"

computer-based communication is becoming the de�ning technology of this decade. A num-

ber of proposals have been made to build a coherent structure over these new high-bandwidth

networks and thereby convert them into a National Information Infrastructure (NII). The

�

This material is based upon work supported by the National Science Foundation under Grant No. IRI-

9117030.

1



amount of information that will be available in an NII is immense: on the order of billions

of objects and hundreds of terabytes of data. Information Retrieval (IR) in such an environ-

ment is a monumental task but essential to the success of the infrastructure. Any solution

to this problem must satisfy two important requirements: it must be scalable to handle the

large number of information objects and it must be semantically rich enough to support

e�ective information retrieval.

Our architecture and indexing strategy provides a search engine that can satisfy these

requirements. The KEYNET system supports information retrieval for a corpus of information

objects in a single subject area, such as a collection of biological research articles, a set of

court cases, �les containing remote geophysical sensor data, or even collections of software

programs and modules. KEYNET uni�es and extends many commonly used IR mechanisms,

and can be used e�ectively not only for corpora consisting of annotated information objects,

but also for object-oriented databases in general. A distributed architecture and indexing al-

gorithm has been developed for high-performance IR using the KEYNETmodel[BS94c, BS94b].

The prototype system has achieved a throughput of 500 queries per second with a response

time of less than a second for more than 95% of the queries[BS94d].

The KEYNET system is designed for IR from a corpus of information objects in a single

subject area. It is especially well suited for non-textual information objects, such as scienti�c

data �les, satellite images and videotapes. For example, the literal content of a satellite

image does not include the geographic coordinates of the boundaries of the image or other

cartographic abstractions. Some kinds of textual document, such as research papers in

a single discipline, can also be supported. With current technology, KEYNET can support

very high-performance IR from a corpus having up to several million information objects at

approximately the same level of performance as smaller corpora.

A KEYNET system requires the development of a subject-speci�c concept ontology that is

understandable to a literate practitioner of the �eld. A keynet ontology represents knowledge

using a directed graph of conceptual categories and relationships between them. The Uni�ed

Medical Language System (UMLS) developed by the National Library of Medicine is an

example of such an ontology[HL93, LHM93]. KEYNET further assumes that each information

object in its collection has been annotated with a content label that indicates what portion

of the subject-speci�c ontology relates to the content of the object.

1

Both content labels and queries have the same data structure called the keynet structure.

A keynet may be regarded as a kind of semantic network[Lev92], although in practice it is

semantically intermediate between keywords and semantic networks. The keynet framework

generalizes many commonly used mechanisms for information retrieval, such as: subject

classi�cation schemes, keywords, document abstracts, reviews, content labels for non-textual

information objects, properties such as author or date of publication, ranges of text strings

such as \wild card" match strings, and ranges of quantities. The KEYNET system allows a

uniform treatment of these disparate techniques in a system that permits a great deal of

1

We are misusing the word \annotate" slightly here. Although a content label may refer to portions of its

information object, its role is to classify or abstract rather than to explain the portions of the information

object to which it refers.

2



exibility compared to traditional database and information retrieval systems. For example,

one can combine all of the above mechanisms in a single system, and easily add new features

to the ontology, such as new attributes and keywords. In addition, the KEYNET framework

allows for sequences of concepts linked by relationships and expressed in natural language

using phrases, clauses, sentences and paragraphs.

A content label is similar to an abstract or review of a document both in size and in

being separately accessible from its corresponding information object. Using a tool such

as our M&M-Query System[BF93], a content label can be generated by the author of the

information object with no more e�ort than is now taken to write the abstract or to select

the keywords.

2 Example

For a simple example of a content label consider an imaginary paper entitled, \POOQ: A

parallel, object-oriented query system." Suppose that the paper uses some known dynamic

programming algorithms to optimize queries for use on parallel machine architectures. A

keyword-based approach could classify this paper by using phrases such as \parallel algo-

rithms," \object-oriented databases," \dynamic programming," and \query optimization."

Keywords can include topically relevant words and phrases that do not appear in the in-

formation objects themselves. Furthermore, some information objects (like images, scienti�c

data and software) have no text that can reasonably be used by traditional IR technol-

ogy. Keynets enrich the semantics possible with keywords (simple subject classi�cations)

by adding relationships between keywords. In addition to being more expressive than sets

of keywords, keynets exhibit more structure and are generally larger, although still much

smaller than the entire information object.

To describe a content label for the imaginary POOQ paper above, we must �rst describe a

hypothetical ontology for Computer Science. Assume that one of the classes in this ontology

is concerned with the concept of translation or transformation. The content label for the

POOQ paper begins with an instance of the transformation class which is linked via an

attribute edge labeled \input" to an object having the subtype \declarative language," as

shown in Figure 1. The label of each node consists of its type followed by its value (if any)

separated by a colon. Since the output language is well-known, no further elaboration is

needed. However, the input language, POOQ, is not well-known, so it must be speci�ed

further with attributes like its name and other attributes not shown.

As an example of a query, consider \What systems use dynamic programming to generate

C

�

code?" This is translated into the keynet in Figure 2.

After converting a query into a keynet, it is decomposed into components of bounded size.

These fragments are called probes. The fragmentation algorithm is given in [BS94a]. The

probes are indexed using a distributed hash index. Content labels are also fragmented and

the fragments inserted into the index. The search step consists of hashing the probes and

looking for matches with fragments of content labels. The POOQ document in the example

has fragments that match every probe of the query.

3



transform:

'& %$

 ! "#

tt

input

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

h

��

output

++

technique

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

declarative language:

'& %$

 ! "#

��

name

parallel language: C

�

'& %$

 ! "#

algorithm: dynamic programming

'& %$

 ! "#

��

�rst step

::: :::

Figure 1: Example of part of a content label

transform:

'& %$

 ! "#

uu

output

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

++

technique

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

parallel language: C

�

'& %$

 ! "#

algorithm: dynamic programming

'& %$

 ! "#

Figure 2: Semantic network of a query

3 Information Retrieval.

Information retrieval systems are primarily concerned with the problem of providing mech-

anisms for a user to select a small set of relevant documents (or parts of documents like

chapters, �gures, tables, and so on) from a large document collection. This objective di�ers

from database management in a number of ways. Generally speaking, IR systems are not

concerned with answering detailed queries about the content of the documents in the collec-

tion. On the other hand, database systems can answer detailed queries very precisely, but

most are not capable of answering the vaguely worded queries about relevance that an IR

system can handle.

A database system takes for granted that a query is precisely stated, and the issue

becomes how e�ciently the query can be evaluated. By contrast, since IR queries are not

required to be precise, one measures performance in a di�erent manner. The two most

common general measures of retrieval quality in IR research are called recall and precision.

The former is the ratio of documents retrieved versus the number of available documents

relevant to the query, i.e., the fraction returned out of all desirable documents (a measure

of alpha risk or type I error). The latter is the ratio of the number of relevant documents

retrieved versus the total number of documents retrieved, or the useful fraction of what was

actually retrieved (beta risk or type II error).

Recall and precision presume that categories assigned by human experts are correct,

complete, and well-speci�ed; yet emergent concepts are seldom clearly formulated. An ideal

information retrieval mechanism must not only capture poorly expressed concepts, but also

somehow adapt as ideas change; its conceptual ontology must evolve over time.

Most commercial IR systems are based on a boolean model of relevance. The query terms

4



are matched to keywords or to words in the document content, and relevance is determined

by the satisfaction of a boolean expression speci�ed by the user. A variety of techniques

such as word stemming, truncation, thesauri and lexicons have been used to extend this

model[Sal89].

In contrast to boolean methods, the so-called \vector" methods use a notion of relevance

that is less sharply de�ned: a document has a degree of relevance (salience) rather than sim-

ply being relevant or irrelevant. Documents are represented as points in a multidimensional

vector space. One can then compare documents to each other as well as to queries. One

commonly used measure is the cosine of the angle between the points regarded as vectors

[Sal89]. Other possible measures of salience include path distance between nodes in a graph,

or the number of levels that must be traversed to connect two categories in a hierarchy of

abstractions.

While vector methods use probability and statistical methods to improve retrieval e�ec-

tiveness, they are the same as boolean methods in their reliance on simple linguistic units,

such as combinations of words or phrases, as the basis for retrieval. Since fragments of

natural language do not always communicate a concept unambiguously for every combina-

tion of speaker, listener, writer or reader, retrieval errors inevitably arise from irrelevant

discourse. Consequently, to improve retrieval e�ectiveness IR systems often label documents

using keywords or phrases that may never appear in the document itself.

Moreover, relevance requires relative judgement; material irrelevant for categorization

may still be relevant for other user purposes. Retrieval that merely matches against text

in a document body presumes concepts can be completely characterized by statistical cor-

relations. Yet as Jacobs [Jac93] observes, \statistical methods must be an aid rather than

a replacement for knowledge acquisition". Text statistics are best used to identify patterns

that depend on specialized words and phrases not obvious to casual readers. Mechanisms

that recognize complex ideas are better constructed by human experts, whose understanding

of a concept may transcend language.

Unfortunately, knowledge-based approaches that utilize semantic networks are currently

considered so ine�cient that they are explicitly omitted from some IR textbooks. For ex-

ample, [FBY92] dismisses them on the basis of \the amount of manual e�ort that would be

needed to represent a large document collection."

4 Related Work.

Despite their reputation in IR circles as cumbersome, ine�cient and suitable only for small

databases, at least one IR researcher has used knowledge-based indices successfully [FHL

+

91].

Fuhr et al's AIR/X performs automatic indexing of documents using terms (descriptors)

from a restricted vocabulary. Probabilistic classi�cation determines indexing weights for

each descriptor using rule-based inference.

After building a system similar to AIR/X, Jacobs [Jac93] determined that \the combina-

tion of statistical analysis and natural language based categorization is considerably better

than either alone." His paper describes an automated set of statistical methods for pattern

5



acquisition that operate inside a knowledge-based approach for news categorization (an area

closely related to document classi�cation and other information retrieval tasks).

Both of these systems attempt to automate the process of generating index terms.

KEYNET, by contrast, is concerned not with how the index terms are obtained but instead

with their structural relationships.

Several distinct families of databases for semantic networks have been developed. Such

databases are often called knowledge-base systems. Some of the best known of these are:

Conceptual Dependency, ECO, KL-ONE, NETL, Preference Semantics, PSN and SNePs (see

[Leh92]). All of these support link types, frame systems and so on, but few if any explicitly

concern themselves with performance measures familiar in traditional database work, such as

minimizing the number of disk accesses required to retrieve complex structures (i.e., graphs

assembled from multiple frames and their typed relations). Contemporary knowledge-base

systems traverse semantic networks one frame/relation at a time. Unless the knowledge-base

�ts entirely in the main memory of a single processor, these traversals result in large amounts

of virtual memory paging.

In [Lev91], Levinson describes a technique for pattern-oriented (graph) retrieval. Levin-

son's approach discovers common structures among graphs in a database, and then uses

pattern associativity to reduce the required number of tests for subgraph isomorphism. A

separate paper, [Lev92], compares techniques for subgraph isomorphism testing suitable for

pattern-oriented retrieval. The baseline retrieval method described in [Lev92] considers a at

set of N networks with no pattern associativity information, in which each query requires

N isomorphism tests. The �rst improvement indexes commonly occurring substructures in

the graphs, and tests only a subset of the entire database. A second improvement cre-

ates a multilevel index of subgraph relationships between successive levels of substructures

and the domain of graphs in the database (establishes a partial order). A �nal elaboration

applies multilevel indexing to connectivity and label information required during subgraph

isomorphism testing (via the re�nement method), rather than to the graph substructures

themselves. This produces a tree of \node descriptors" in order of increasing speci�city, with

actual index pointers at its leaves.

In KEYNETwe approximate subgraph isomorphism testing to determine the relevance of in-

formation objects that were previously annotated with content labels. Our approach compiles

fragments of content labels into a hash table, reducing lookup computation (while increasing

database construction overhead). Although some ambiguity remains possible when matching

fragments instead of whole graphs, vertex overlap between components that contain vertex-

incident edges ensures similarity of graph structure between a query and a content label that

is retrieved using its fragments. This approximation further allows \simultaneous" (multi-

process, distributed or parallel) matching of di�erent regions of the query and content labels

(rather than serialized path-oriented inspection).

The KNOWIT system of S�lvberg, Nordb� and Aamodt [SNA92] embeds a semantic network

in a front-end query re�nement system. Queries to the ESA-QUEST bibliographic database

are expanded according to a semantic model that describes the meaning of a concept entirely

in terms of its relations to other concepts in the model. The KNOWIT system is a front-end

to a traditional IR system, whereas KEYNET uses semantic networks as part of its search

6



strategy.

The Government Information Locator Service (GILS)[GIL] is an example of a second-

level retrieval mechanism in which the result of a search is another search engine rather

than an information object. The KEYNET model can also be applied to to instances of itself,

producing a quasi-encyclopedic classi�cation of information objects. The following diagram

suggests how one could organize search engines in the NII:

Top-Level

Engine

ttj

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

j

zzt

t

t

t

t

t

t

t

%%

J

J

J

J

J

J

J

J

**

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

U

Biology

KEYNET

��

Legal

KEYNET

��

: : :

Geophysics

KEYNET

��

Software

KEYNET

��

Article

Collection

Case

Collection

: : :

Image

Collection

Program

Collection

Using currently available technology, each search engine could support collections having a

few million information objects. The top-level search engine could, in turn, support one

million search engines. The entire structure would therefore index 10

12

information objects

having an aggregate storage size of 10

16

bytes, i.e., 10,000 Terabytes.

5 System Architecture.

The KEYNET information retrieval technique is designed to be used in a highly distributed

environment, and assumes that the information objects themselves are widely distributed.

Information objects need not be textual and may be physically located anywhere in the

network.

Retrieval is accomplished by means of content labels for each information object. These

content labels are stored in a repository at the KEYNET site. Structure that exists among

the content labels is de�ned by a schema called the ontology that is a substantial database

in its own right. For more details about its structure, see [BS94a]. The content labels are

indexed by means of a distributed hash table stored in the main memories of a collection

of processors at the KEYNET site. These processors form the search engine. Each content

label contains information about locating and acquiring the actual information object. The

KEYNET system is only concerned with �nding information objects. Acquiring (and paying

for) objects is a separate issue.

To see more precisely where all of these components reside, and how they are connected

to one another, refer to Figure 3. The user's computer, responsible for presentation (user-

interface) services, is at the upper left. A copy of the ontology is kept locally at the user

site. As this will typically require several hundred megabytes of memory, it will generally

be stored on a CD-ROM. The ontology is also the basis for the user interface to the search

7



CD−ROM

query

response

response

KEYNET Site

Wide Area Network

Local Area Network

Local Disks

Figure 3: Architecture of KEYNET Search Engine

engine[BF93]. Queries must conform to structure speci�ed by the ontology, and are sent over

the network to a front-end processor at the KEYNET site. Responses are sent back over the

network to the user's site, where they are presented to the user (making use of the ontology

to display them).

At the KEYNET site, the front-end computer is responsible for relaying query requests to

one of the search engine computers. The purpose of the front-end computer is mainly to

distribute the workload, but it also helps to simplify the protocol for making queries. The

search engine itself is a collection of processors (or more precisely server processes) joined

by a high-speed local area network. The search engine processors are called nodes. The

repository of content labels is distributed on disks attached to some of the nodes. The index

to the content labels is distributed among the main memories of the nodes.

Queries are answered by fragmenting them into small graph components, called probes,

each having a bounded size. Components similarly obtained from content labels are called

index terms.

The result of the fragmentation step is a large number of probes that can be indexed

in parallel. The indexing step is analogous to the technique used by biologists to study the

genome. A chromosome (a very long strand of DNA) is probed using small pieces of DNA

which can attach to the chromosome only where they match in a precise fashion. In fact, a

KEYNET system can be used for the problem of mapping long strands of DNA called clones

to their locations in the chromosome by regarding the clones as \information objects" which

are \retrieved" using probes.

The basic indexing strategy of KEYNET is to match probes (fragments of queries) with

index terms (fragments of content labels). We now give an outline of the distributed algo-

rithm that accomplishes this matching. For more details see [BS94b]. This algorithm can

be characterized as a \scatter-gather" technique. Queries are sent to a front-end processor

that forwards the query to a randomly chosen node of the search engine. This is the �rst

8



scattering step. The node that is assigned the query is called the home node of the query.

At the home node, the query is broken apart into probe fragments, as discussed earlier.

Each probe is then hashed using a standard algorithm. The hash value is in two parts. One

part is a node number and the other part is the local hash value used at that node. The

local hash value and the query identi�er are then sent to the node that was selected by the

hash value. The result of hashing is to scatter the probes uniformly to all of the nodes of

the search engine.

Upon receiving the local hash value of a probe, the node looks it up in its local hash

table. An index term in the hash table that matches a probe is called a \hit." The hits

are sent back to the home node of the query; this is the \gather" step of the algorithm.

The home node then computes the similarity measure (currently the cosine measure) of each

object in the collection, and the objects are ordered by their degree of similarity. The object

identi�ers of the most relevant objects are then sent back to the user. More sophisticated

techniques (including explicit graph isomorphism testing) can be applied as post-processing

�lters.

The insertion of a new content label in the index is done in a manner very similar to the

query algorithm. The same fragmentation, hashing and scattering algorithms are used for

content labels as for queries. The only di�erence is that instead of matching entries in the

hash table, index terms are inserted into the table.

6 Formats and Protocol.

KEYNET uses the UDP protocol of the TCP/IP communications protocol suite. In this sec-

tion we describe the format and protocol for KEYNET communication. Since KEYNET assumes

that the ontology is available at both the sender and the receiver, it is unnecessary for the

format to include any textual information, and all �elds consist of integers. For convenience

in communicating between di�erent machine architectures, all integers are represented as

network integers. For simplicity in the following, we have omitted the speci�cation of ac-

knowledgement and error structures.

6.1 Keynet Structure.

Both queries and content labels use the same data structure, called the keynet structure and

de�ned as follows:

1. Ontology Identi�er. Each ontology is assigned a unique integer identi�er.

2. Major version number. Since ontologies can evolved over time, a version number

is used to distinguish both major and minor versions of an ontology. Minor versions

di�er from one another only by the addition of new concepts, conceptual categories

and relationship types. Major versions may di�er in more substantial ways, including

the splitting of categories, merging of categories, as well as more complex alterations

in the ontology.

9



3. Minor version number.

4. Count. Most keynets are expected to be small enough to �t into a single UDP packet,

but there is a mechanism for larger keynets. The count �eld speci�es that the keynet

has been split into a number of pieces as speci�ed in this �eld. Normally the value of

this �eld is 1.

5. Sequence number. When a keynet is in several pieces, this �eld will have the se-

quence number of this piece. The values range from 0 to one less than the count �eld

above.

6. Vertex count. This is the count of the number of vertices that will be speci�ed in

the list immediately following this �eld.

7. Vertex list. This is a set of zero or more vertex speci�cations. Each vertex speci�ca-

tion consists of three integers as follows:

(a) Vertex id. Each vertex of a keynet has a unique identi�er within the keynet.

(b) Type id. Each vertex has a type or conceptual category. The types and their

identi�ers are listed in the ontology.

(c) Instance id. A vertex may be instantiated using one of the instances given in

the ontology. Instance identi�ers are nonzero integers. If this �eld has value 0,

then the vertex has not been instantiated.

8. Edge count. This is the count of the number of edges that will be speci�ed in the

list immediately following this �eld.

9. Edge list. This is a set of zero or more edge speci�cations. Each edge speci�cation

consists of three integers as follows:

(a) Source vertex. This is the vertex identi�er of the source of this edge in the

keynet.

(b) Destination vertex. This is the vertex identi�er of the destination of this edge

in the keynet.

(c) Edge type id. Each edge has a type. The edge or relationship types and their

identi�ers are listed in the ontology.

6.2 Query Structure.

The query structure is used to send queries to a KEYNET search engine. This same structure

is also used within the search engine for sending queries from one node to another. The

query structure has the following structure:

1. Message type speci�er. The �rst �eld is used to specify to a KEYNET search engine

that this packet contains a query or a part of one.

10



2. Source internet number. This is the internet number of the internet node that

originated the query. If this node sets this �eld to zero, then the engine will �ll in its

value.

3. Source port number. This is the port number used to send the query. Like the

internet number, if this is set to zero by the originator, then the search engine will �ll

in its value.

4. Source identi�er. This is a source-generated query identi�er which may be used

by the system that originates the query to distinguish its queries from each other.

However, it does not distinguish queries originating from di�erent locations.

5. Engine identi�er. This is an identi�er supplied by the search engine that uniquely

distinguishes queries from each other within the search engine.

6. Keynet structure. See above for this structure.

6.3 Content Labels.

The structure of a content label is almost identical to that of a query. The only di�erence

is that the �rst �eld contains a message type speci�er appropriate to a content label rather

than a query. This structure is used for registering a content label in the search engine

repository.

6.4 Query Responses.

A query response structure is somewhat more complex than the structure for a content label

because there will generally be several responses to a given query, and it is necessary to

specify the query that is being answered using a given query response packet.

1. Message type speci�er. This speci�es that this structure contains a query response.

2. Response count. This is the number of responses that were generated by the query.

3. Response rank. This the sequence number of the response within the list of all

responses to one query in order by their salience with the �rst response being the one

judged to be most salient.

4. Weight. This is a measure of the salience of the response. Normally this will be

expressed as a real number between 0 and 1. To store this number in an integer �eld,

it is multiplied by a denominator (such as 1,000,000) that is speci�ed in the ontology.

5. Source identi�er. This is the source-generate query identi�er from the original query.

6. Engine identi�er. This is the engine-generated identi�er from the original query.

7. Keynet structure. See above for this structure.

11



6.5 Protocol.

The protocol for queries is as follows. The query originator sends a query packet to the front-

end of the search engine. The front-end immediately responds with an acknowledgement

packet that includes the identi�er assigned to the query by the search engine. The front-end

�lls in missing �eld of the query packet and forwards the query to a randomly chosen home

node for the query. The search engine uses the keynet algorithm to �nd and rank the desired

responses. Each of these is sent back to the query originator from whichever search engine

node �nds it �rst. The query originator is responsible for collecting the responses, arranging

them in the correct order, and then displaying them.

7 Summary.

KEYNET is a graph-oriented method for information object indexing and retrieval. Infor-

mation Objects must be annotated with small semantic networks that represent their key

concepts. A larger semantic network (part of a subject-speci�c ontology) determines which

node and link types (basic concepts and relations) are considered pertinent to a subject

during information object retrieval.

The query graph actually used for retrieval may substitute more general or speci�c con-

cepts for those speci�ed by the user. Retrieval does not match large components of the query

graph against whole content labels. Instead, the query graph is fragmented into small probes

of bounded size. These fragments are matched against content labels, and resulting re-

trieval sets of potentially relevant information objects are combined using fragment-oriented

weights.

The graph representations, their fragmentation, and post-retrieval merging of information

object sets associated with distinct fragments naturally introduce a \fuzziness" appropriate

to information retrieval notions of relevance, and facilitate use of distributed or parallel

processing resources (at appropriate stages).

The KEYNET system employs a number of optimizations to ensure that it scales up to

large corpora and so that it has high performance. Fragmentation combined with pattern

associativity of graph structures and linear hashing techniques produces tractable complex-

ity of communications and computation, despite necessary isomorphism testing and index

manipulation. The system is therefore compatible with the requirements for search engines

needed in proposals for an NII.

References

[BF93] K. Baclawski and N. Fridman. M&M-Query: Database support for the annotation

and retrieval of biological research articles. Technical Report NU-CCS-94-07,

Northeastern University, College of Computer Science, 1993.

12



[BS94a] K. Baclawski and D. Simovici. An abstract model for semantically rich information

retrieval. Information Systems, 1994. to be submitted.

[BS94b] K. Baclawski and J. E. Smith. A distributed approach to high-performance infor-

mation retrieval. In Proc. IEEE Sympos. Par. Distr. Processing, 1994. Submitted.

[BS94c] K. Baclawski and J. E. Smith. High-performance, distributed information re-

trieval. Technical Report NU-CCS-94-05, Northeastern University, College of

Computer Science, 1994.

[BS94d] K. Baclawski and J. E. Smith. A uni�ed approach to high-performance, vector-

based information retrieval. In RIAO'94, 1994. submitted.

[FBY92] William B. Frakes and Ricardo Baeza-Yates. Information Retrieval / data struc-

tures and algorithms. Prentice-Hall, Englewood Cli�s, NJ, 1992.

[FHL

+

91] Norbert Fuhr, Stephan Hartmann, Gerhard Lustig, Michael Schwantner, Kon-

stadinos Tzeras, and Gerhard Knorz. AIR/X: A Rule-Based Multistage Indexing

System for Large Subject Fields. In Proc. User-Oriented Content-Based Text and

Image Handling Conference (RIAO-91), pages 606{623, Centre de Hautes Etudes

Internationales d'Informatique Documentaire, Paris, France, 1991.

[GIL] Government information locator service (GILS): Draft report to the Information

Infrastructure Task Force. Available by anonymous ftp from 130.11.48.107 as

/pub/gils.txt.

[HL93] Betsy L. Humphreys and Donald A.B. Lindberg. The UMLS project: making the

conceptual connection between users and the information they need. Bulletin of

the Medical Library Association, 81(2):170, Apr 1 1993.

[Jac93] Paul S. Jacobs. Using statistical methods to improve knowledge-based news cat-

egorization. IEEE Expert, pages 13{23, April 1993.

[Leh92] Fritz Lehmann. Semantic networks in arti�cial intelligence, parts I and II. Com-

puters and Mathematics with Applications, 23(2-9), 1992.

[Lev91] Robert Levinson. A self-organizing pattern retrieval system and its applications.

International Journal of Intelligent Systems, 6:717{738, 1991.

[Lev92] Robert Levinson. Pattern associativity and the retrieval of semantic networks.

Computers and Mathematics with Applications, 23(6-9):573{600, 1992.

[LHM93] D.A.B. Lindberg, B.L. Humphreys, and A.T. McCray. The Uni�ed Medical Lan-

guage System. Methods of information in medicine, 32(4):281, Aug 1 1993.

[Sal89] Gerard Salton. Automatic Text Processing. Addison-Wesley, Reading, MA, 1989.

13



[SNA92] Ingeborg S�lvberg, Inge Nordb�, and Agnar Aamodt. Knowledge-based informa-

tion retrieval. Future Generation Computer Systems, 7:379{390, 1991/1992.

14


