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Abstract

We propose an architecture and index structure for semantically rich information

retrieval from a subject-specific collection of documents or other information objects.

The technique assumes that information objects have been labeled using small semantic

networks called keynets. The index structure is compatible with parallel machine

architectures and scales up well, allowing very large collections to be searched very

quickly using semantically complex queries.

1 Introduction.

With the expansion of the Internet and the development of new “Information Highways,”
computer-based communication is becoming the defining technology of this decade. A num-
ber of proposals have been made to build a coherent structure over these new high-bandwidth
networks to convert them into a National Information Infrastructure (NII). For example, the
proposed I-95 Information Market [T+93] proposes an infrastructure that facilitates the free-
market purchase, sale and exchange of services. The amount of information that will be
available on the I-95 or any other NII is immense: on the order of billions of objects and
hundreds of terabytes of data. Finding information in such an environment is a monumental
task but essential to the success of the infrastructure. Any solution to this problem must
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satisfy two important requirements: it must be scalable to handle the large number of in-
formation objects and it must be semantically rich enough to support effective information
retrieval (IR).

We propose an architecture and indexing strategy for a search engine that would satisfy
these requirements. The KEYNET system would support information retrieval for a collection
of information objects in a single subject area, such as a collection of biological research arti-
cles, a set of court cases, files containing remote geophysical sensor data, or even collections
of software programs and modules. KEYNET assumes that the information objects in its col-
lection have been annotated using small semantic networks of key concepts (keynets) that are
consistent with a subject-specific concept ontology.1 Although there are certainly important
distinctions between semantic networks, knowledge frames and objects in an object-oriented
database, none of these distinctions are important for the purposes of KEYNET, so they will
be used interchangeably within the context of this article.

A keynet is similar to an abstract or review of a document both in size and in being
separately accessible from its corresponding document. If good tools are available, it could
be generated by the author of the document with no more effort than is now taken to write
the abstract or to select the keywords. It may eventually be possible to use natural language
processing techniques to generate keynets, but this is only possible for textual information
objects. A third possibility is to have professional annotators construct the keynets. This is
less costly than one might expect. The biological research literature consists of some 600,000
articles per year. It would cost less than $30 million per year to annotate this literature
with keynets, a tiny amount compared to the cost of generating this literature in the first
place[BF93].

To give a simple example of a keynet consider an imaginary paper entitled, “POOQ: A
parallel, object-oriented query system.” Let’s say that the paper uses some known dynamic
programming algorithms to optimize queries for use on parallel machine architectures. A
keyword-based approach would classify this paper by using phrases such as “parallel algo-
rithms,” “object-oriented databases,” “dynamic programming,” and “query optimization.”

Keywords have the advantage that they may include topically relevant words and phrases
that do not appear in the documents themselves. Furthermore, some information objects (like
images, scientific data and software) have no text that can reasonably be used by traditional
IR technology. Keynets enrich the possible semantics as compared with keywords based on
simple subject classification schemes by adding relationships between keywords. In addition
to being more expressive than sets of keywords, keynets would also generally be larger,
though still much smaller than the entire information object.

To describe a keynet for the imaginary POOQ paper above, we must first describe a
hypothetical ontology for Computer Science. Suppose that one of the classes in this ontology
is concerned with the concept of translation or transformation. The keynet for the POOQ
paper could begin with an instance of the transformation class which is linked via an attribute

1We are misusing the word “annotate” slightly here. Although a keynet may refer to portions of its

document, its role is to classify or abstract rather than to explain the portions of the document to which it

refers.
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Figure 1: Example of part of a keynet

edge labeled “input” to an object having the subtype “declarative language,” and so on.
Using semantic networks the keynet would look something like that shown in Figure 1. In
this figure, the label of each node consists of its type followed by its value (if any) separated
by a colon. Since the output language is well-known, no further elaboration is needed.
However, the input language, POOQ, is not well-known, so it must be specified further with
attributes like its name and other attributes not shown.

The I-95 infrastructure proposal specifically mentions the need for “content labels [on
information objects] to permit users to learn about available resources.” These content
labels are designed to deal with the problem of scaling up to a full-scale NII. Keynets would
provide a solution to the design of such content labels. In spite of supporting the rich
semantic content possible with semantic networks, the KEYNET system uses efficient indexing
techniques based on hashing to make it a fast and scalable search engine.

Since the purpose of the KEYNET system is information retrieval, the paper begins with
some background on IR in section 2. Despite the perceived inefficiency of semantic network
techniques in IR, there are systems that use such methods, and we discuss such related work
in section 3. We then describe the overall system architecture of KEYNET.

The KEYNET system is an information retrieval system for a subject area as specified in
a database called the ontology. The ontology is discussed in section 5. The objects in the
collection will be called documents even though, as noted earlier, the KEYNET system works
equally well with information objects that are not documents in the usual sense of this term.
The most common use of KEYNET begins with a user query. The query may be expressed
using natural language text which is parsed to obtain a semantic network, or else a graphic
interface may be used to express the query directly in terms of semantic networks. The same
ontology is used for defining the structure of semantic networks of queries as that used for
keynets. For example, the query “What systems use dynamic programming to generate C∗

code?” would be translated into a semantic network like that in Figure 2.
Having converted the original query into a semantic network, the next step is to break

the network into small semantic networks having a bounded size. We call these fragments
probes. Fragmentation is discussed in section 6. These fragments are indexed using a hash
index structure defined in section 7. The keynets are also fragmented and the fragments
inserted into the index as described in subsection 7.3. The search step consists of hashing
the probes and looking for matches with fragments of keynets of documents. In the example,
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Figure 2: Semantic network of a query

the POOQ document would have fragments that match every probe of the query. The search
algorithm is described in more detail in subsection 7.2.

We are in the process of developing a prototype KEYNET system for information retrieval
on two document collections. The first is a small document collection and ontology prepared
by the Biological Knowledge Laboratory [BFH+93] at Northeastern University. The second
will be a full-size, randomly-generated document collection. The first collection will be used
for testing recall and precision, while the second collection will be used for testing database
performance. For a discussion of techniques for rapid generation of random databases see
[GEBW93].

2 Information Retrieval.

Information retrieval systems are primarily concerned with the problem of providing mech-
anisms for a user to select a small set of relevant documents (or parts of documents like
chapters, figures, tables, etc.) from a large document collection. This objective differs from
database management in a number of ways. Generally speaking, IR systems are not con-
cerned with answering detailed queries about the content of the documents in the collection.
On the other hand, whereas a database system can answer detailed queries very precisely,
most are not capable of answering the vaguely worded queries about relevance that an IR
system can handle.

A database system takes for granted that a query is precisely stated, and the issue
becomes how efficiently the query can be evaluated. By contrast, since IR queries are not
required to be precise, one measures performance in a different manner. The two most
common general measures of retrieval quality in IR research are called recall and precision.
The former is the ratio of documents retrieved versus the number of available documents
relevant to the query, i.e., the fraction returned out of all desirable documents (a measure
of alpha risk or type I error). The latter is the ratio of the number of relevant documents
retrieved versus the total number of documents retrieved, or the useful fraction of what was
actually retrieved (beta risk or type II error).

Recall and precision presume that categories assigned by human experts are correct,
complete, and well-specified; yet emergent concepts are seldom clearly formulated. An ideal
information retrieval mechanism must not only capture poorly expressed concepts, but also
somehow adapt as ideas change; its conceptual ontology must evolve over time.

Most commercial IR systems are based on a boolean model of relevance. The query terms
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are matched to keywords or to words in the document content, and relevance is determined
by the satisfaction of a boolean expression specified by the user. A variety of techniques
such as word stemming, truncation, thesauri and lexicons have been used to extend this
model[Sal89].

In contrast to boolean methods, the so-called “vector” methods use a notion of relevance
that is less sharply defined: a document has a degree of relevance (salience) rather than sim-
ply being relevant or irrelevant. Documents are represented as points in a multidimensional
vector space. One can then compare documents to each other as well as to queries. One
commonly used measure is the cosine of the angle between the points regarded as vectors
[Sal89]. Other possible measures of salience include path distance between nodes in a graph,
or the number of levels that must be traversed to connect two categories in a hierarchy of
abstractions.

While vector methods use probability and statistical methods to improve retrieval effec-
tiveness, they are the same as boolean methods in their reliance on simple linguistic units,
such as combinations of words or phrases, as the basis for retrieval. Since fragments of
natural language do not always communicate a concept unambiguously for every combina-
tion of speaker, listener, writer or reader, retrieval errors inevitably arise from irrelevant
discourse. Consequently, to improve retrieval effectiveness IR systems often label documents
using keywords or phrases that may never appear in the document itself.

Moreover, relevance requires relative judgement; material irrelevant for categorization
may still be relevant for other user purposes. Retrieval that merely matches against text
in a document body presumes concepts can be completely characterized by statistical cor-
relations. Yet as Jacobs [Jac93] observes, “statistical methods must be an aid rather than
a replacement for knowledge acquisition”. Text statistics are best used to identify patterns
that depend on specialized words and phrases not obvious to casual readers. Mechanisms
that recognize complex ideas are better constructed by human experts, whose understanding
of a concept may transcend language.

The power available in a contemporary pattern-matching IR system comes mostly from its
lexicon. Efficiency motivates use of simple combinations of lexical categories, such as can be
represented in regular expressions. Yet more complicated patterns and mechanisms provide
a major advantage in category definition and retrieval despite the time and effort required
to create them, rendering knowledge-based approaches preferable to statistical methods.

Unfortunately, knowledge-based approaches that utilize semantic networks are currently
considered so inefficient that they are explicitly omitted from some IR textbooks. For ex-
ample, [FBY92] dismisses them on the basis of “the amount of manual effort that would be
needed to represent a large document collection.”

3 Related Work.

Despite their reputation in IR circles as cumbersome, inefficient and suitable only for small
databases, at least one IR researcher has used knowledge-based indices successfully [FHL+91].
Fuhr et al’s AIR/X performs automatic indexing of documents using terms (descriptors)
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from a restricted vocabulary. Probabilistic classification determines indexing weights for
each descriptor using rule-based inference.

After building a system similar to AIR/X, Jacobs [Jac93] determined that “the combina-
tion of statistical analysis and natural language based categorization is considerably better
than either alone.” His paper describes an automated set of statistical methods for pattern
acquisition that operate inside a knowledge-based approach for news categorization (an area
closely related to document classification and other information retrieval tasks).

Both of these systems attempt to automate the process of generating index terms.
KEYNET, by contrast, is not directly concerned with how the index terms are obtained but
rather in the data structures and indexing techniques that would make use of the index
terms.

Several distinct families of databases for semantic networks have been developed. Such
databases are often called knowledge-base systems. Some of the best known of these are:
Conceptual Dependency, ECO, KL-ONE, NETL, Preference Semantics, PSN and SNePs (see
[Leh92]). All of these support link types, frame systems and so on, but few if any explicitly
concern themselves with performance measures familiar in traditional database work, such as
minimizing the number of disk accesses required to retrieve complex structures (i.e., graphs
assembled from multiple frames and their typed relations). Contemporary knowledge-base
systems traverse semantic networks one frame/relation at a time. Unless the knowledge-base
fits entirely in the main memory of a single processor, these traversals result in large amounts
of virtual memory paging.

In [Lev91], Levinson describes a technique for pattern-oriented (graph) retrieval. Levin-
son’s approach discovers common structures among graphs in a database, and then uses
pattern associativity to reduce the required number of tests for subgraph isomorphism. A
separate paper, [Lev92], compares techniques for subgraph isomorphism testing suitable for
pattern-oriented retrieval. The baseline retrieval method described in [Lev92] considers a flat
set of N networks with no pattern associativity information, in which each query requires
N isomorphism tests. The first improvement indexes commonly occurring substructures in
the graphs, and tests only a subset of the entire database. A second improvement cre-
ates a multilevel index of subgraph relationships between successive levels of substructures
and the domain of graphs in the database (establishes a partial order). A final elaboration
applies multilevel indexing to connectivity and label information required during subgraph
isomorphism testing (via the refinement method), rather than to the graph substructures
themselves. This produces a tree of “node descriptors” in order of increasing specificity, with
actual index pointers at its leaves.

In KEYNET we adapt subgraph isomorphism techniques to determine the relevance of doc-
uments that were previously annotated with keynets. Our approach compiles (fragments of)
search paths through a tree of node descriptors into a hash table, reducing lookup compu-
tation (although increasing database construction overhead).

The KNOWIT system of Sølvberg, Nordbø and Aamodt [SNA92] embeds a semantic network
in a front-end query refinement system. Queries to the ESA-QUEST bibliographic database
are expanded according to a semantic model that describes the meaning of a concept entirely
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in terms of its relations to other concepts in the model. The KNOWIT system is a front-end
to a traditional IR system, whereas KEYNET uses a different kind of search strategy.

Chu and Chen [CC92] explain that cooperative query answering (CQA) substitutes re-
trieval terms to and from some abstract object representation (such as a type abstraction
hierarchy). Separate frameworks can be used for grouping “data” (collections of objects
with the same type and many common properties) and “knowledge” (relationships between
objects of different types in specific problem domains), for example data by (type) class and
knowledge by subject. (The “pattern instances” that link data and knowledge are mildly
reminiscent of semantic network nodes.)

One example of CQA is “Neighborhood query answering” (NQA) which first general-
izes query terms and then re-specializes them into a collection of “nearby concepts” in a
compound query. Neighborhood specifiers such as “morning”, “afternoon” or “cross-country
flight” substitute for specific times or airline names. Chu and Chen present a formal system
of rewriting rules and nearness measures for query relaxation in NQA.

Another example of CQA is “Associative query answering” (AQA) which traces be-
haviour dependencies among “cooperating objects” under a given subject. Virtual “pattern
instances” with restricted scope and behaviour provide many-to-many linkages between data
objects and knowledge subjects. Knowledge hierarchies based on generalization, composition
or abstraction are used to support deductive reasoning that obtains information relevant to
query construction but not explicitly contained in a user’s request, using a logic-based rule
language and inference engine, flexible goals, object contexts, and so on.

In general, CQA is a front-end to a traditional database management system. Moreover,
the user is required to specify the degree of relaxation explicitly; it is not done automatically.

The EDS TemplateFiller system [SMHC93] applies Message Understanding (MUC) text-
filtering techniques to the generation of knowledge frames for one or a few specific subject
areas from entire texts (computer product announcements). TemplateFiller fills in slots for
frames that exist in a predefined schema of templates, ignoring subjects that are not in the
schema.

There are many other MUC-style systems; in fact, there is an annual competition among
them. Such a system could automate the construction of the keynets for a collection of
specialized textual documents. In fact, we are building a system of this kind for biological
research papers [BFH+93].

4 System Architecture.

The KEYNET system is an information retrieval system for a subject-specific collection of
documents. The subject area is defined by a database called the ontology. The ontology
includes a number of components such as its schema, sublanguage grammar and thesaurus.
The schema specifies the structure of knowledge frames and handles the regular features of
knowledge in the subdiscipline. Less regular features are specified in the thesaurus which
can specify relationships between concepts in the schema as well as between individual terms
in the sublanguage. The sublanguage grammar is used for parsing natural language queries
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Figure 3: KEYNET System Architecture

as well as for generating natural language from frames. The ontology is discussed in more
detail in section 5.

The KEYNET system processes queries using a series of modules as in Figure 3. A user
query may be formulated using natural language text which is parsed into frames using the
Natural Language (NL) parser which, in turn, uses information in the Sublanguage database
and the knowledge frame schema. The topic of NL parsing is beyond the scope of this
article and is not described further. Alternatively, a user query may be directly expressed as
knowledge frames using a graphical frame fill-in tool. Still another possibility (not shown in
the diagram) is for the user to formulate the query using natural language and then to edit
the resulting frames if they were not properly parsed by the NL parser.

However the knowledge frames are obtained, the next step is to break the frames into
small semantic networks, called probes, each having a bounded size. This fragmentation is
also done for the keynets of documents, and fragments thereby obtained will be called index
terms.

The fragmentation of a query may also involve semantic “broadening” in which additional
probes may be constructed by replacing concepts and terms by closely related concepts and
terms. The thesaurus database specifies both the weight of such similarity links and the
behavior of substitution during broadening. Broadening the query increases recall at the
expense of precision. The user can specify how broadly or narrowly the query is to be
interpreted by adjusting a threshhold value for semantic broadening.

The result of the fragmentation step is a large number of probes that can be indexed in
parallel. This is shown in the diagram by using double arrows. The indexing step is analogous
to the technique used by biologists to study the genome. A chromosome (a very long strand
of DNA) is probed using small pieces of DNA which can attach to the chromosome only
where they match in a precise fashion.

The KEYNET system separates the semantic broadening and indexing steps. As a re-

8



sult efficient hashing techniques may be employed rather than the somewhat less efficient
tree-structured indices. Tree-structured indices can be used to solve both the indexing and
broadening steps using a single structure. For example, in a B-tree, entries that are alpha-
betically close are also close in the index. Techniques for indexing more than one dimension
are known (for example, the hB-tree of Lomet-Salzberg [LS90]), but they are complex and
are not yet commonly available in commercial systems. Semantic networks not only have a
large number of “dimensions” but these dimensions are also not typically linear. Semantic
proximity is very difficult to express or even to approximate using multidimensional vector
spaces as in the vector models of IR. Accordingly, in the KEYNET system we use hash indices
rather than tree indices. The cost of using hashing is that a much larger number of probes
must be processed, but they can be processed in parallel.

The result of the indexing operation is a set of document identifiers each of which has a
rough measure of relevance based on the number of probes that “hit” the document. This
measure can be used to rank the documents. Alternatively, one can use more sophisticated
graph isomorphism techniques. These more sophisticated techniques would use the thesaurus
as well as the original query. As these techniques are beyond the scope of this article, they
will be covered elsewhere.

The last step before presenting the result to the user is a tool for explaining how the
documents were retrieved. This can be as simple as highlighting the passages that caused
the retrieval. This technique works well only when no semantic broadening has occurred.
More complex forms of matching will require not only highlighting but also natural language
explanations.

Not shown in the diagram is the possibility of an additional form of user interaction
known as relevance feedback. The user can indicate which documents in a set of retrieved
documents are actually relevant to the original query. Such feedback can be used to modify
the weights in the thesaurus, resulting in a customized thesaurus for each user.

Also not shown are the modules involved in constructing the ontology and the keynets
of documents. These issues are the subject of the next section.

5 Ontology.

The word ontology literally means “a branch of metaphysics relating to the nature and
relations of being.” Our use of the word is much more restrictive, dealing only with the nature
of, and relationships among, concepts within a narrow subject area. Attempts to specify
ontologies for scientific disciplines are very common, with most disciplines having some kind
of subject classification scheme by this time. However, as Lakoff points out,[Lak87], “human
categorization is based on principles that extend far beyond those envisioned in the classical
theory.” As a result, simple classification methods leading to taxonomies of concepts are
inadequate for expressing the rich variety of human categorization techniques.

The KEYNET system depends on having a background ontology that defines the structure
and behavior of keynets. The Ontology Builder[BF93] is a system related to KEYNET that
provides support for constructing and maintaining subject-specific ontologies that have much
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richer semantics than simple taxonomies.
One of the important features of the Ontology Builder is that it will automatically gener-

ate tools for entering keynets. We currently have a prototype called the M&M-Query system
that has such a tool specialized for entering knowledge frames for the Materials & Methods
sections of biological research papers[BF93]. This prototype furnished an important “proof
of concept” for the feasibility of using such tools for annotating documents.

6 Fragmentation.

No matter how the original query is formulated, it is eventually converted into a graph
(semantic network) which is then given to the Fragmentation Module. The output of this
module is a set of small fragments called probes, a term borrowed from biology. This module
is responsible for substitutions (broadening) and the computation of the probes.

Broadening is controlled by a weight associated with each possible substitution. Succes-
sive substitutions multiply the weights until a user-specified limit is reached. This prevents
a combinatorial explosion.

After computing the substitutions, the resulting graphs are broken into probes. The
simplest kind of probe is a single node. Each node is labeled with a type and possibly a
value. Types are defined in the schema of the ontology, while values are defined in the
lexicon. Roughly speaking, probes consisting of a single node correspond to the keywords of
a traditional keyword-based IR system.

The next more complex probe is a pair of nodes connected by an attribute edge. Attribute
edges are directed and have a label. The attribute labels are defined in the schema of the
ontology. The most complex probe that is used is one having two attribute edges and two
or three nodes. Note that fragments can consist of more than one node together with the
edges (relationships) between them, so that any given node as well as any given relationship
edge will generally occur many times in the set of all fragments.

The algorithm for fragmentation can be expressed as follows:

for every node n:
output the node n
for every variant n′ of n:

output the variant n′

for every outgoing edge e:
output the edge e with nodes n and t
for every variant n′ of the source node n:

output the edge e with nodes n′ and t
for every variant t′ of the target node t:

output the edge e with nodes n and t′

for every pair of (undirected) edges e and f incident on nodes t and u, respectively:
output the triple (n, t, u)
for every variant n′ of the node n:
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output the triple (n′, t, u)
for every variant t′ of the node t:

output the triple (n, t′, u)
for every variant u′ of the node u:

output the triple (n, t, u′)

Each probe has an associated weight. The weight is computed using weights taken from
the ontology as well as substitution weights and possibly even weights specified in some
way in the original query. The number of probes can be limited by specifying a lower limit
below which probes will be discarded. Larger probes have a weight larger than the sum of
the weights of its constituent parts since a match with such a probe would be much more
meaningful than just matches with the individual nodes.

The fact that a match with a larger probe is more meaningful than one with a smaller
probe suggests that indexing with larger probes is more useful than with smaller ones, in
general. However, using larger probes expands the size of the index greatly with index terms
that are much less likely to be matched. One must trade-off the inclusion of index terms
that have high weight but little likelihood of being matched against index terms that have
lower weight but greater likelihood of being matched.

Returning to the query example in Figure 2, the fragmentation step would produce six
probes: one for each node, one for each edge, and one for the whole network. This assumes
no broadening of the query. There are several ways one can broaden this query. The specific
language, C∗, could be broadened to any parallel language. The algorithm category could
be replaced with a more general category such as “algorithm: search.” Just using these two
variants, the number of probes increases from six to twelve.

Even for a relatively small query, the fragmentation step can generate a large number of
probes. However, for a fixed broadening limit, the number of probes is a constant times the
size of the query. For a more precise statement of this see Theorem 1 and Corollary 2 in the
Appendix.

7 Index Structure.

After fragmentation, the probes are hashed and matched with entries in the index. If a probe
matches an entry in the index, then it is said to have hit the entry. Each entry consists of a
document identifier and additional information to be discussed below. A document can be
hit by many probes, and the sum of the weights of all probes that hit the document (suitably
normalized) can be used to give an approximate measure of the relevance of the document
to the query. Alternative measures of relevance are discussed in the next section.

In the rest of this section, we discuss how the index is structured and how operations are
performed on the index. The details of the structure depend to some extent on the archi-
tecture of the machine to be used. The main distinction is whether the memory is globally
shared (as in tightly coupled machines like the KSR-1) or local as in parallel computers like
the MasPar or Connection Machine.
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7.1 Data Structure.

The overall structure of the index is a hash table, with each component being called a bucket.
The buckets, in turn, have the structure of a cache, a structure not often used in an index.
For this reason, we call our index structure a hash-cache index.

Each probe is converted to a hash index using a standard hashing algorithm as in
Knuth[Knu73, section 6.4]. For a probe p, let h(p) be its hash value, a string of exactly
n bits. We write hk(p) for the first k bits of h(p), where k ≤ n. Similarly, write hl(p) for
the last l bits of h(p). Write w(p) for the weight of the probe p. Depending on the machine
architecture, there will either be a fixed number of buckets in the table or the number of
buckets can increase as needed. When the number of buckets can vary, we employ the dy-
namic hashing scheme due to Litwin[Lit80] which he has recently generalized to the case of
distributed systems[LNS93]. When the number of buckets is fixed, the number is a power of
two, say 2m. The bucket for a probe p is then determined by hm(p). The rest of the hash
value, hn−m(p), is then used for searching within the bucket. The same technique holds for
the case of a variable number of buckets except that m is not necessarily the same for every
bucket.

Within each bucket data is arranged as a tree, where hn−m(p) is the index. The tree
must be balanced for a parallel machine architecture. Note that probes are not represented
in the tree structure. One only has (parts of) hash values and document identifiers. For
this to work, it is necessary for the number of bits n in the hash value to be large enough
so that collisions will be very unlikely. Unlike traditional hashing algorithms, KEYNET can
tolerate occasional collisions because of the redundancy inherent in using large numbers of
probes. This optimization results in a significant reduction in the overall size of the index
since (partial) hash values are much smaller than probes in general. It also improves the
speed of indexing by replacing relatively costly string comparisons with fixed-size integer
comparisons. For more detail about the probability model underlying this optimization, see
the Appendix.

7.2 Searching.

To search for a keynet κ, one first performs substitutions on the nodes of κ, obtaining a list
of variants for each node. One then fragments κ into a set of probes having at most three
vertices, at most one of which is a variant node. See Corollary 2 in the Appendix for a bound
on how many probes can be generated. Let P(κ) be the set of probes.

The next step is to compute h(p) for every p ∈ P(κ). This can be done in parallel.
The hash values are then sent to their buckets. More precisely, at a bucket with address
a, one collects the weights w(p) and partial hash values hn−m(p) of the probes that satisfy
hm(p) = a. Each partial hash value is then used for searching within its bucket. This step
uses well-known algorithms.

The tree searching can be done in parallel. However, in this case, one must face the
problem that not all buckets will have the same number of probes. To process all the probes
in parallel will require a time proportional to the maximum number of probes occurring in a
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bucket. This can be large, and it wastes resources because only a few (or even just one) of the
parallel processors will be doing useful work when the last few probes are being processed.
However, because of the statistical nature of the algorithm, it is acceptable to discard a small
number of probes. When this is done, the number of parallel processing cycles needed can be
reduced to reasonable values. For example, if there are 1,000 processors and 2,000 probes,
and if one is willing to discard 2 probes on average, then it suffices to process at most 7
probes at each bucket. See the discussion and table in the Appendix for details.

The result of each search within a bucket is a set (possibly empty) of document identifiers.
Each document identifier is associated with the weight w(p) of the probe. Sets of document
identifiers at different buckets are then merged, with the weights being accumulated for each
document. The document identifiers having the highest accumulated weight are then passed
to the next module for post-processing.

7.3 Insertion.

Insertion of keynets into the index begins with a fragmentation step similar to the one for
searching except that no substitutions are done on the nodes. The number of index terms
is then limited by the bound in Theorem 1. Assuming that the knowledge frames are not
too large, one can expect that the number of index terms will be no more than about 4 or
5 times the number of nodes in the keynet. The index terms are then hashed as before, but
now the partial hash values and document identifiers are inserted into the buckets.

There can, of course, be more than one document identifier associated with the same
hash value. However, if the number of these exceeds a specified limit, then the document
identifiers are dropped from the index, although the partial hash value is not. Instead, the
partial hash value is associated with a marker to indicate that document identifiers were
deleted.

A hash value with a large number of associated identifiers does not discriminate enough
for it to be useful for retrieval. Traditional IR systems refer to nondiscriminating words as
“stop words,” and standard lists of stop words are available. Index terms that have too
many associated identifiers will be called stop terms.

If documents are labeled by keynets having about 50 nodes, then there would be around
200 or so index terms per document. A collection of one million documents will then have
over 200 million probes. However, when the nondiscriminating index terms are dropped, the
number of terms will be substantially smaller, perhaps only 50-100 million. The resulting
index should take up less than a gigabyte of memory. If each document requires 30-100K
bytes, then the the index will be about two orders of magnitude smaller than the document
collection itself.

When a bucket overflows, there are several strategies that can be used. If expandable
hashing is being used, one simply allocates a new bucket (or buckets) and redistributes
the trees into the new buckets. If there is a fixed number of buckets, then occurrences of
identifiers will be selectively deleted from the bucket in a manner similar to a cache. The
details of the caching algorithm are beyond the scope of this article. The effect of selective
deletion of identifier occurrences is to “forget” index terms that are less useful. This does not
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mean that the documents indexed by the forgotten terms are no longer accessible, since each
document will have many terms associated with it. Eventually, of course, all the references
to a given document could be forgotten at which point the document would cease to be
accessible. However, this would only happen after a relatively long period of time. It would
require more than just a loss of interest in this particular document. It would mean that
there was no longer any interest in any feature of the document.

7.4 Deletion.

Explicit deletion of documents from the index can be done using a technique similar to the
one used for insertion. The only peculiar feature of deletion is that stop terms can change
back to being ordinary index terms if enough documents are deleted. However, it may not
be necessary to delete documents from the index. As noted in the subsection above, one can
allow a document collection to increase in size even with a fixed size index. In this case,
documents do not get abruptly removed, but rather gradually get less and less accessible as
interest in its index terms declines.

8 Summary.

KEYNET is a graph-oriented method for document indexing and retrieval. Documents must be
annotated with small semantic networks that represent their key concepts. A larger semantic
network (part of a subject-specific ontology) determines which node and link types (basic
concepts and relations) are considered pertinent to a subject during document retrieval.

The query graph actually used for retrieval may substitute more general or specific con-
cepts for those specified by the user. Retrieval does not match large components of the query
graph against whole keynets of documents. Instead, the query graph is fragmented into small
probes of bounded size. These fragments are matched against document keynets, and re-
sulting retrieval sets of potentially relevant documents are combined using fragment-oriented
weights.

The graph representations, their fragmentation, and post-retrieval merging of document
sets associated with distinct fragments naturally introduce a ”fuzziness” appropriate to in-
formation retrieval notions of relevance, and facilitate use of parallel processing resources
(at appropriate stages). Although it was not the inspiration for KEYNET, it is interesting to
compare it with human memory. Like human memory it is associative and semantically rich.
It is also fault-tolerant: loss of a few probes during retrieval or loss of some of the buckets
would make it somewhat harder to find a document but would not prevent it. It accom-
plishes this fault-tolerance by randomly distributing many index terms for each document
throughout the entire index. Human memory is believed to have a similar feature. Human
memory is highly parallel, and in the parallel version of the KEYNET system, the index has a
fixed size with memories fading rather than abruptly disappearing.

The KEYNET system employs a number of optimizations to ensure that it scales up to large
document collections and so that it has high performance. Fragmentation combined with
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pattern associativity of graph structures and linear hashing techniques produces tractable
complexity of communications and computation, despite necessary isomorphism testing and
index manipulation. The system is therefore compatible with the requirements for search
engines needed in proposals for an NII.

The proposed retrieval mechanism can be applied to instances of itself, producing a
quasi-encyclopedic classification of documents. The following diagram suggests how one
could organize search engines in the NII:
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Engine

ttjjjjjjjjjjjjjjjjjjjjjjj
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. . .

Image

Collection

Program

Collection

The top-level search engine appears to be a “hotspot” in this scheme, but it would not
have to be consulted for every query. Most individuals would only use a few search engines
and would not need to consult the top-level engine once the locations of these engines were
known.

Using currently available technology, each search engine could support collections having
one million or more documents. The top-level search engine could, in turn, support one
million search engines. The entire structure would therefore index 1012 documents having
an aggregate storage size of 1016 bytes, i.e., 10,000 Terabytes.
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Appendix: Graph-Theoretic and Probabilistic Details

In this appendix, we sketch the derivation of some results from graph theory and probability
that are useful for KEYNET.

Graph Theoretic Results

Theorem 1 Let G be an acyclic, undirected graph with v vertices and e edges. If there are
at most n edges incident on an vertex, then there are at most 1 + 2e+ n(e− 1)/2 connected
subgraphs having at most 3 vertices.

To prove this, one first reduces to the connected case, in which case e = v− 1. There are
clearly 2e+1 connected subgraphs having at most 2 vertices, so the problem is to bound the
number of connected subgraphs having exactly 3 vertices. One can show that this number is
maximized when all the vertices of G have either valence 1 or valence n (or as close to this
as possible). There will be at most (e− 1)/(n− 1) vertices with valence n, and each of these

defines
(

n

2

)

connected subgraphs having 3 vertices.
Allowing substitutions means that some of the vertices have variants that are distinguish-

able from the original vertex. Subgraphs are allowed to have at most one variant vertex.
The following is an easy calculation given the one in the theorem above:

Corollary 2 Let G be an acyclic, undirected graph with v vertices and e edges. If there are
at most n edges incident on an vertex, and if each vertex has at most m variants, then there
are at most 1 +m+ (3m+ 2)e+ (3m+ 1)n(e− 1)/2 connected subgraphs having at most 3
vertices, where at most one of the vertices is a variant.

Probability Models

If the hash function h(p) is properly chosen, then the hash values will be approximately
uniformly distributed over their range. If the hash value is n bits long, then this range is
[0, 2n−1]. If there are N items in the hash table, then the probability of randomly generating
a hash value that corresponds to an item in the table is N2−n. In particular, if a probe p
does not match any item in the table, then it will accidentally match (“collide”) with the
hash value of an item in the table with probability N2−n. This can be made arbitrarily small
by choosing n large enough. For example, if N is 67 million (i.e., 226) and if n is 40, then
the probability of a collision is 2−14 = 6× 10−5.
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The probability model being used here is called the finite occupancy process. The remain-
ing results are concerned with the distribution of a set of independent hash values distributed
uniformly among a set of buckets. Let P be the number of hash values (i.e., the number of
probes), and let B be the number of buckets. Suppose that one can only process up to N
probes per bucket. Let DPBN be the number of probes that are not processed (and hence
discarded), and let FDPBN = DPBN/P be the fraction of all probes that are discarded.
Both of these are random variables. We would like to compute the expectation (average) of
these random variables:

Proposition 3 Let P,B,N be positive integers with B > 10, and write α for the ratio P/B.
Then the expectation of FDPBN is approximately equal to

1

α

∞
∑

k=N+1

(k −N)
αk

N !
e−α.

The expectation is computed as follows. First approximate the finite occupancy process
with the Poisson process. In Poisson process, the probability that there are k probes in a
given bucket is αk

k!
e−α. If k ≤ N , then no probes are discarded; if k = N +1, then one probe

is discarded; and so on. Thus the expected number of probes discarded in a single bucket is

∞
∑

k=N+1

(k −N)
αk

k!
e−α.

The total number of probes discarded, DPBN , is the sum of the number of probes discarded
at each bucket. There are B buckets, and they are stochastically independent (unlike the
case of the finite occupancy process). Hence

E(DPBN) = B
∞
∑

k=N+1

(k −N)
αk

k!
e−α.

Finally, since FDPBN = DPBN/P , the result follows.
The following table gives values of N such that the expectation of FDPBN is less than

0.01, 0.001 and 0.0001, for various values of the ratio P/B:

P/B E(FD) < 0.01 E(FD) < 0.001 E(FD) < 0.0001
0.5 3 4 5
1 4 5 6
2 6 7 9
3 7 9 11
5 10 12 14
10 16 19 22
20 27 31 35
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