
The Structural Semantics of Inheritance

Kenneth Baclawski

College of Computer Science

Northeastern University

Boston, Massachusetts 02115

Abstract

A large variety of di�erent concepts have been introduced to express the notion of inheritance.

Single inheritance, multiple inheritance, multiple independent inheritance and delegation are all

various forms of the concept of inheritance. In this paper, we give a structural framework for the

semantics of these forms of inheritance. This framework accounts for the structural and for some

of the behavioral characteristics of the many forms of inheritance.

1. The Many Forms of Inheritance

Most arti�cial intelligence systems as well as many programming languages and database

management systems support techniques whereby one object or type can inherit from another

object or type in some fashion, and a great diversity of distinct inheritance concepts have

been proposed and implemented. The purpose of this article is to present a framework

that captures some of this diversity so that the concepts can be compared. Our point of

view is structural, but some of the behavioral aspects are also considered. For an excellent

treatment of the behavioral aspects of inheritance in programming languages see [WE89].

For inheritance in arti�cial intelligence see [4]. Most of the examples will use C++ [6] because

this is the most common programming language supported by commercial object-oriented

database management systems.

We begin with a list of some of the variations on the general theme of inheritance. In

this list, the concepts are merely introduced. We will discuss each concept in more detail in

later sections.



Kenneth Baclawski page 2

Taxonomy. The taxonomy or classi�cation hierarchy or generalization hierarchy has been

used in biology and other sciences for centuries to classify observations and phenomena. More

recently it has been introduced into computer science where it has been used for the same

kinds of tasks, but it has also been generalized in many ways.

Single Inheritance. This is called simple public derivation in C++. This technique

allows a type to inherit attributes from one other type, and in addition, supports additional

features such as substitutability and late binding.

Multiple Inheritance This is also called virtual public derivation in C++. This tech-

nique allows a type to inherit attributes from several other types, while still supporting

substitutability and late binding.

Multiple Independent Inheritance This is the default form of public derivation in

C++. It di�ers from multiple inheritance in a number of ways, yet still supports substi-

tutability and late binding.

Delegation This concept is also known as prototype inheritance or extension inheritance.

It allows an object of one type to be used as a prototype for an object of another type, which

extends the prototype. The extension can override attributes of the prototype. The extension

object could also have the same type as the prototype, in which case it is a version of the

prototype. The technique has been proposed as a way to support versions of objects.

Private Inheritance. This is also called private derivation in C++. This mechanism is

syntactically similar to multiple inheritance, but it does not have substitutability nor does

it allow late binding.

We now introduce a data model which is then used to express all of the forms of

inheritance mentioned above.

2. The MU Model

The mu model is one of the components of the nu& semantic object-oriented data model-

ing tool [1], [2], [3]. This data modeling tool is intended to be a vehicle for both research and

education on such tools. It is concerned with studying ways to enhance the modeling power

of a transaction management system while maintaining its high-performance characteristics.

The name is a reference to Northeastern University where most of the work is being carried

out.

The mu model is an object-oriented semantic data model. The introduction to given

in this section leaves out some details for the sake of a smoother exposition. A rigorous

introduction to the mu model is given in the Appendix (section ). For a more thorough

treatment see [3].

A database in the mu model is de�ned to be a set D of triples (o; a; p), where o and p

are objects and a is an attribute or component. We will use the graphic notation o

a

�!p to

mean that (o; a; p) is in the database D, and we will say that the object o has value p for the

attribute a, or more succinctly, that o has a-value p. Notice that attributes are multivalued:

an object o can have many a-values. The universe of all possible objects is denoted O, and

the universe of all possible attributes is denoted A.



The Structural Semantics of Inheritance page 3

Using the terminology of object-oriented programming, the concept of an attribute

includes both instance variables (called data members in C++) and methods (called function

members in C++). If o

a

�!p and a represents an instance variable, then p is the value of

the instance variable a in the object o. If a represents a method, then p is the return value

of a message sent to the object o using the method a. The mu model can represent message

parameters and binding times to some extent, but these behavioral aspects of object-oriented

programming will not be discussed in this paper.

Most of the concepts introduced in section assume that objects are somehow organized

into collections or types. As this relationship is so basic, we distinguish it from all other

attributes and gave it special features in the mu model. This attribute is called the instance-

of relationship, and it will be denoted by instance_of or simply by a

1

2 A. An object o is

an instance of a type t in the database D when o

a

1

�!t.

The mu model does not distinguish \object" from \type," so that every object is, in

principle, also a type. However, to avoid logical inconsistencies and to have a satisfactory

concept of a \schema" from database management and the analogous concept of \compile-

time" from programming languages, types and objects are separated from one another.

Accordingly, in the mu model it is assumed that there is a function called the level function,

level : O �! f0; 1; 2; : : :g

that strati�es the universe of all objects into \ordinary objects" (i.e., those for which level

has value 0), \types" (i.e., those for which level has value 1), \meta-types" (i.e., those for

which level has value 2), and so on. The attribute a

1

relates objects on adjacent levels:

if (o; a

1

; p) 2 D then level(p) = level(o) + 1:

All other attributes are constrained to relate objects on the same level. In this paper, we

only consider levels 0 and 1, and we refer to them as the \object level" and \type level,"

respectively.

To express the concept of a schema or type speci�cation, instances of a type must be

constrained by the attributes of the type. For example, suppose that person and string

are two types. We would like to specify that an instance of person has a name which must

be of type string. This is done by inserting the triple (person; name; string) into the

database D on the type level. We call this a type constraint: it constrains any name value

of an instance of person to be an instance of type string. Type constraints are important

enough to make them an axiom of the mu model called the type constraint axiom: if (t; a; u)

is in the database and o is an instance of t, then every a-value of o must be an instance of u.

The type constraint axiom does not fully capture the concept of a type speci�cation,

since it allows instances of a type to have attributes other than those attached to the type.

Moreover such \extra" attributes are unconstrained. There are situations where such at-

tributes are useful, for example, when types are considered instances of a meta-type. How-

ever, for ordinary objects one generally assumes the type speci�cation axiom: if (o; a; p) is

in the database, then there are types t and u such that o is an instance of t, p is an instance

of u and (t; a; u) is also in the database.



Kenneth Baclawski page 4

The type constraint and the type speci�cation axioms apply only to \ordinary" at-

tributes. This means that they do not apply to the instance_of attribute, nor to the is_a

attribute to be introduced below.

The concept of inheritance is represented with a distinguished attribute that has special

features in the mu model. This attribute is called is_a or a

0

2 A. When (s; a

0

; t) is in the

database, we say that s is derived from t and that t is a base or base component of s. When

s and t are types, we say that s is a subtype of t and that t is a supertype of s.

We assume, as an axiom, that the is_a attribute is acyclic. In other words, there are no

is_a cycles. Some models allow such cycles. The objects in an is_a cycle are synonymous

(i.e., equivalent to one another) with respect to the data model. While there are uses for

synonymous objects, it is both simpler and more exible to allow objects to have several

\names" than to allow objects to be synonymous, where the name is one of the attributes

of the object. For this reason, we require a

0

to be an acyclic attribute, and therefore do not

allow objects to be synonymous.

There is one more axiom for the mu model, the inheritance axiom. Unlike the others,

there are three possibilities for this axiom. For each choice of this axiom, we obtain a

slightly di�erent data model. Note that these are not di�erent forms of inheritance, but

rather di�erent semantic data models within which one can try to express the various forms

of inheritance.

Variation A of the inheritance axiom will also be called attribute inheritance. This ver-

sion of the axiom postulates that subtypes acquire or inherit the attributes of all supertypes.

More precisely, if s

a

0

�!t and t

a

�!u, then s

a

�!u, or graphically:

u

%

a

x

?

a

s

a

0

�! t

Although one often sees inheritance de�ned this way, at least informally, it is awkward to

express the concepts of substitutability and late binding using attribute inheritance, and

almost impossible to express attribute overriding. So in practice, one of the other two

variations is actually used.

The second variation is called variation I or instance inheritance. This postulates that

instances of a subtype are also instances of any supertype. More precisely, if o

a

1

�!s and

s

a

0

�!t, then o

a

1

�!t, or graphically:

s

a

0

�! t

x

?

a

1

%

a

1

o

If one thinks of types as collections of objects, then this axiom is set-theoretic: supertypes

contain subtypes.



The Structural Semantics of Inheritance page 5

The third variation, called variation O or object inheritance, seems quite di�erent from

the other two. In this variation, the inheritance graph on the type level is reproduced for

each object instantiated on the object level. More precisely, if o is an instance of s and s is a

subtype of t, then there is a unique object o

0

such that o

0

is an instance of t and o is derived

from o

0

. Graphically it looks like this:

s

a

0

�! t

x

?

a

1

x

?

a

1

o

a

0

�! o

0

We call o

0

the base component for o of type t. One can think of object inheritance as an

implementation of instance inheritance, but it is more than that. As we will see there are

forms of inheritance that can be expressed in terms of object inheritance but that cannot

easily be expressed using attribute or instance inheritance.

Before comparing the three variations, we say a few words about the words (i.e., the

terminology). The term \inheritance" intuitively suggests variation A. On the other hand,

the term \is a" intuitively suggests variation I. Finally, variation O is not as intuitive as the

other two, but the term \delegation" seems to �t reasonably well.

The three variations di�er in their expressive power. Consider this simple situation: we

have a type person, a subtype student and an object o of type student. Suppose that one

of the attributes of person is id of type int. In terms of diagrams:

person

id

�! int

x

?

a

0

o

a

1

�! student

In variation A, o has attribute id of type int by virtue of the fact that student has this

attribute:

person

id

�! int

x

?

a

0

%

id

o

a

1

�! student

In variation I, o has attribute id of type int because o is also an instance of type person:

person

id

�! int

%

a

1

x

?

a

0

o

a

1

�! student

In this variation, student could either have the attribute id or not, thereby allowing a

subtype to \override" an attribute in a supertype, something that cannot be expressed in

variation A. However, overriding can only put an additional type constraint on this attribute

(for example, that the id must be in a certain range).



Kenneth Baclawski page 6

Finally, consider variation O. In this case, there is a unique base object o

0

of type person:

o

0

a

1

�! person

id

�! int

x

?

a

0

x

?

a

0

o

a

1

�! student

Here, o has attribute id indirectly through the base object o

0

. As in variation I, student

could either have the attribute id or not, thereby allowing a subtype to \override" an

attribute in a supertype. Now, however, as an attribute of student, id could have any type.

Moreover, o

0

will still have its own attribute value(s) for id which can be uncovered under

certain circumstances.

We will henceforth assume that variation O of the inheritance axiom holds unless spec-

i�ed otherwise.

To complete the description of the mu model one must distinguish a number of built-in

objects. For example, one must specify built-in types such as int, string and so on. The

built-in types represent the starting point for building more complex types. The choice of

which types should be built-in is an important design decision of any data model, but for

the most part these will not be relevant to this article.

Dual to the concept of built-in type is the concept of a built-in constraint. To allow

constraints to be manipulated like any data in the database, they are given object status.

Like objects in general, complex constraints can be built from more elementary constraints.

Some of the built-in constraint objects for the mumodel will be introduced in the next section.

3. Components

The concept of a component or attribute is a basic structuring technique for virtually

every programming language or database management system. It goes by a variety of names,

but there is a remarkable agreement about what it should mean. This is in contrast to the

concept of inheritance where the same name is used for a great variety of di�erent concepts

about which there is considerable disagreement.

As we noted earlier, every attribute in the mu model is multivalued by default. It is

important to distinguish between attributes that must be single-valued from those that can

be multivalued. Such a constraint on an attribute is called a functionality constraint. In

the mu model a functionality constraint is a built-in object on the type level. The most

important functionality constraints are the following:

one-to-many. An attribute a of a type t is one-to-many if no two instances of t have

the same a-value. Such an attribute represents a containment relationship, since there is no

sharing of attribute values among instances of t.

many-to-one. An attribute a of a type t ismany-to-one (or single-valued) if every instance

of t has at most one a-value. Most attributes are single-valued, and this is the only form of

attribute available in many programming languages and database management systems.

one-to-one. An attribute is one-to-one if it is both one-to-many and many-to-one.



The Structural Semantics of Inheritance page 7

mandatory. An attribute a of a type t is mandatory if every instance of t is required to

have at least one a-value.

The fact that the same attribute can be used for several types leads to the possibility

of ambiguity. A trait is a pair consisting of an object and one of its attributes (see the

Appendix for a rigorous de�nition). Traits are never ambiguous while attributes might be

because attributes can be overridden. In order to deal with this problem, attributes and

hence traits are accessed using a naming system. The relationship between traits and their

names is many-to-many: each trait has many names and di�erent traits can have the same

name.

In general, names of attributes can be complex. On the type level, an attribute name

usually consists of an identi�er or an identi�er together with the name of a type for which

it is a component. For example, in C++ the attribute address of person has two names:

\address" and \person::address." On the object level, the names of traits can be even

more complex: in addition to the two already mentioned on the type level, there can be

names that specify a sequence of increasingly more derived types. The mu model provides

mechanisms for specifying the many-to-many relationship between names and traits. The

module in the nu& system responsible for supporting these features is called the name server,

and disambiguation is called name resolution. This allows the disambiguation mechanism

to be tailored to a programming language more easily, since each programming language

has its own mechanism for disambiguation. By separating attributes and traits from their

names, the mu model makes it possible to integrate the model into diverse object-oriented

programming languages.

4. Properties of Inheritance

Inheritance, especially when combined with properties like substitutability and late

binding to be discussed below, is one of the most important features provided by an object-

oriented system. A systemmust support this concept if it is to be considered object-oriented.

Assume for the moment that we are using variation I of the inheritance axiom. In this

case, the instance_of attribute will be multivalued. For example, suppose that student

and teacher are subtypes of person. If an object is instantiated as a student, then it

will also be an instance of person. While the object is an instance of several types, it

is an instance of exactly one most derived type, namely student. Most object-oriented

programming languages would not allow an object to be an instance of both student and

teacher without being an instance of some type derived from both of these. In other words,

these programming languages require that objects satisfy what we call the unique type axiom:

for every object o such that level(o) = 0, there exists a unique most derived type s, such

that o

a

1

�!s.

The fact that instance_of is multivalued in object-oriented systems makes \the type

of an object" ambiguous. To clarify this, CLOS [5], uses the term \member of" for what

we have been calling \instance of," while the term \instance of" in CLOS is reserved for

what we would call \instance of the most derived type." Using CLOS terminology, an object

can be a member of many types, but it is an instance of exactly one. This terminology is



Kenneth Baclawski page 8

appealing, because it �ts well with the set-theoretic interpretation embodied in the instance

inheritance axiom.

4.1. Substitutability

An important property of any concept of inheritance is substitutability: any instance of

a subtype can be substituted for (or regarded as) an instance of a supertype. This property

is hard to express using variation A. It is trivial for variation I, since every instance of the

subtype is an instance of the supertype.

By contrast, substitution is a nontrivial operation for variation O, involving the re-

placement of the original object by one of its base components. The implementation of

inheritance in C++, for example, is accomplished by using pointer manipulation. The C++

implementation is an example of \eager" substitution: the original object is replaced by its

base component at the time substitution occurs. Some other systems use \lazy" substitution:

the replacement is delayed until an attribute is evaluated.

4.2. Late binding

Another important property of inheritance is support for late binding. A late bound

function (or method) is a certain kind of function which can \remember" the original object

when invoked on a base component obtained by substitution. Here is an example of this

concept. Let student be a type derived from the base type person. Suppose that each type

has its own function component called display that prints information about an instance.

One would like to keep lists of persons, some of whom might be students, and to print

information about them using the display function. A variable x of type person is used to

scan through such a list and the display function is invoked for each object in the list. Since

the variable x is of type person, it is necessary to regard each instance of student in this

list as a person. In other words, one is using substitutability to construct the list. On the

other hand, when display is invoked one would like the student function to be used when

an object is a student and the person function to be used when an object is a person. In

other words, the result of a substitution must still \remember" the original object.

The mechanism for remembering the original object of a base component will be called

recollection. Intuitively it undoes substitution, but there are a number of circumstances

that can complicate recollection. For example, one can substitute several times in succession

to obtain a sequence of base objects while recollection always gives the original object in a

single step. In addition, there are forms of inheritance where the unique type axiom does

not hold, in which case there is no most derived object to recall. Finally, one can sometimes

specify explicit conversions that perform only a partial recollection.

One of the features of the mu model is that late binding is split into two independent

steps: recollection and name resolution. By modularizing late binding in this manner, the

concept is simpli�ed and much easier to implement. Name resolution may involve substitu-

tion, but never involves any recollection of an object, while recollection is concerned solely

with objects and does not involve any names at all. For a precise de�nition of recollection

and partial recollection, see section . Recollection and partial recollection are multivalued in

general. If recollection is not single-valued, then there must be a disambiguation mechanism

for recollection to be possible, and similarly for partial recollection.



The Structural Semantics of Inheritance page 9

Late binding allows one to write procedures that exhibit a limited but very useful form

of polymorphism. A procedure is polymorphic if it can act on a variety of types without

being rewritten or even recompiled.

As is the case with substitutability, recollection is hard to express using variation A,

and it is trivial for variation I. Recollection is also relatively easy to express in variation O,

provided that the unique type axiom holds. Even partial recollection is not di�cult: think

of it as a full recollection followed by a substitution. However, if the unique type axiom does

not hold, then recollection and partial recollection may depend on the substitution history

of the object.

If \eager" substitution is used and the unique type axiom holds (as is usually the case

in C++), then recollection can be accomplished by storing information in the base object.

In C++ this information is called the virtual function table pointer. If the unique type

axiom does not hold, then recollection requires that the original object still be available

after substitution. One solution to this problem is to use \lazy" substitution. However, this

approach has an impact on performance relative to the \eager" approach.

The concept of recollection in the mu model clari�es some properties of C++ that are

otherwise somewhat mysterious. In this language, instantiation of an object is a two-step

mechanism. First space for the object and all base objects is allocated. Then the the object

and its base objects are \constructed" by calling the appropriate constructor functions. The

order in which the constructors are called is not entirely obvious: the constructor for the

base components are called before the constructor of the object. However, this requirement is

forced by the inheritance axiom: in order for a derived object to have unique base components

after being constructed, the base components must be constructed before the object itself. If

one of the base components also has its own base components, then the same rule applies to

it. Since construction involves many steps, it is possible to invoke the recollection mechanism

prior to the completion of construction. The mechanism will result in a well de�ned object

but not, of course, the one that would result if the construction were completed, since that

object is the last to be constructed. Virtual functions called during construction of base

components will detect this. However, once instantiation is complete, the unique type axiom

is satis�ed until the object is deleted.

Deletion in C++ is also a two-step mechanism, essentially the reverse of instantiation.

First the objects are destructed by calling the destructor functions, normally starting with the

most derived object. Then the space used by the object and its base objects is deallocated.

However, there is a situation in which some of the destructor functions will not be called.

The reason for this surprising situation is that destructors, like other functions, can be either

early bound or late bound. If the destructor is late bound, then when an object is deleted,

the destructor for the most derived object is called, followed by the destructors for the base

objects, as one would expect. However, if a destructor is early bound and a substitution

occurred, then the destructors are called as if the base object did not have any derived

objects. This seems to contradict the fact that one has control over the extent (i.e., the

set of instances) of a type. Yet only a late bound function invokes recollection, so if the

destructor is early bound and an object is substituted, then recollection does not occur, and

the destructor function for the original object will not be invoked. The lesson from this is



Kenneth Baclawski page 10

that if one wants full control over the extent of a type in C++, then every base type should

declare its destructor to be late bound even if the destructor does nothing.

4.3. Performance independence

Another desirable property of any inheritance mechanism is that if some feature of this

mechanism is not used, then the performance of the program should be the same as if the

feature was not supported at all. More succinctly, one should not have to \pay" for what

one does not use. We will call this property performance independence.

For example, in C++, there is an elegant implementation strategy for simple inheritance

in which the base object is always implemented as the �rst component of the object. As

a result, the base component has the same address as the object and substitution becomes

trivial. Late binding is implemented by storing a pointer in the base component that points

to a table of addresses of virtual functions. The table pointed to will depend on the type of

the original object. However, if no functions are late bound, then no virtual function table

pointer is stored in the object. In other words, if late binding is not used, then there are

neither time nor space penalties incurred.

By contrast, if inheritance is implemented using a �eld containing information about

the type of the object (as in Smalltalk), then both space and time penalties are incurred

even if one does not use inheritance at all.

Performance independence was an explicit design goal of C++. This might help to

explain why destructors are early bound by default, as discussed in section above. Although

it is more natural for a destructor to be late bound, this can have an impact on performance.

4.4. Transitivity

One property that is seldom discussed in the literature, perhaps because it seems so

obvious, is transitivity. A database is transitive if the is_a attribute is transitive, that is, if

q is derived from p and r is derived from q then r is derived from p. On the type level, this

means that if s is a subtype of t and t is a subtype of u, then s is a subtype of u.

For variations A and I, transitivity is not interesting: replacing the is_a graph by its

transitive closure adds no additional constraint. By contrast, it does matter for variation

O. In fact, transitivity is the sole di�erence between \virtual" inheritance and \multiple

independent" inheritance in C++: in virtual inheritance the is_a graph is transitive, while in

multiple independent inheritance the graph is nontransitive when two types can be connected

by more than one directed path.

Consider the example of four types B, C, D and E in C++ such that C and D are subtypes



The Structural Semantics of Inheritance page 11

of B and such that E is a subtype of both C and D:

B

% -

C D

- %

E

Suppose that e is an instance of E. One can substitute e as an instance of C, obtaining an

object c, and then substitute c to obtain an instance b of B. However, one can also perform

two substitutions via D to obtain an instance b

0

of B, which need not be the same as b in

general (in fact, can never be the same, since the instantiations are independent and C++

does not allow sharing of base components):

b b

0

x

?

x

?

c d

- %

e

If inheritance is assumed to be transitive, then E is also a subtype of B, and the two objects b

and b

0

of B obtained by multiple substitutions must coincide by variation O of the inheritance

axiom and the transitivity of a

0

.

Incidentally, in the example above, all attributes of B are ambiguous in E. To disam-

biguate such attributes in general, one must specify a sequence of intermediate types. For

example, the full name of an attribute of B has the pre�x C::B:: when the substitution

path goes via C.

In C++ one can mix virtual inheritance with independent inheritance. It is an interest-

ing problem (left for the reader) to characterize those graphs that can be speci�ed in C++

using mixed virtual and independent inheritance.

4.5. Independence of base components

The �nal property to be considered is whether a base component of an object can be

accessed as an object on its own, not just as an object obtained by substitution. A system

that has delegation, or more generally any one that allows sharing of base objects, will have

this property. For example, suppose that D is a subtype of B. Derived objects o

1

and o

2

share



Kenneth Baclawski page 12

the base object o if

o

%

a

0

-

a

0

o

1

o

2

&

a

1

.

a

1

D

This property has an impact on performance independence: both objects and algorithms

must be more complex as a result of the larger collection of possible access paths to an object.

In the example above, if o

1

were regarded as an object of type B then o

1

must be e�ectively

replaced by o, and similarly for o

2

. When the time comes to do recollection, it is not possible

to distinguish between o

1

and o

2

using only information in o. As a result, it is necessary

to use a more complex implementation of objects. This would inevitably have an impact

on performance even when one is not using inheritance, thereby violating the property of

performance independence.

Sharing of base components appears to be possible in C++ as an accident of the fact

that construction is not an atomic operation. However, sharing of base components is not a

supported feature in general, and use of late bound functions during construction is risky.

Sharing of ordinary components is very di�erent from sharing of base components. This

form of sharing is easy to support because ordinary attributes do not normally support

substitutability and late binding.

5. Classi�cation of Inheritance Mechanisms

One can now give a succinct treatment of the main forms of inheritance, along with a

listing of the properties that each form of inheritance supports.

Multiple Inheritance. The is_a attribute is transitive and one-to-many on the object

level. Substitutability and late binding can be supported. Either performance independence

or independence of base objects can be supported but not both.

Single Inheritance. The is_a attribute is one-to-one on the object level. Transitivity,

substitutability and late binding can all be supported. Either performance independence or

independence of base objects can be supported but not both.

Delegation. The is_a attribute is many-to-many on the object level. Transitivity, substi-

tutability, late binding and independence of base objects can all be supported. Performance

independence cannot be supported.

Multiple Independent Inheritance. The is_a attribute is not transitive and is one-

to-many on the object level. Substitutability and late binding can be supported, but only

within the parts of the inheritance graph that use single inheritance. Either performance

independence or independence of base objects can be supported but not both.

The characterization of (multiple) inheritance mechanisms given above allows one to

compare these mechanisms directly with one another. In principle all of the mechanisms



The Structural Semantics of Inheritance page 13

could be implemented in a single system. This is probably not desirable because of the

impact on performance in general and because of the violation of performance indepen-

dence. Nevertheless the framework allows one to compare the modeling power of the various

proposed mechanisms as well as to experiment with other inheritance mechanisms.

6. Minor Forms of Inheritance

The remaining forms of inheritance mentioned in section are minor variations on the

general theme of inheritance. In this section these concepts are expressed in the mu model

and compared with the more important forms of inheritance.

6.1. Taxonomy or Classi�cation Hierarchy

A taxonomy is a special case of single inheritance. It requires two additional kinds of

constraint: covering constraints and disjointness constraints.

Consider, for example, a database that stores cars and trucks. We de�ne types called

car and truck. We then notice that these two types have some attributes in common. This

leads us to make a new type called vehicle with these common attributes. This process is

called generalization. The reverse process in which a more general concept is divided into

more speci�c ones is called specialization or classi�cation. In either case, these processes

lead to a type vehicle all of whose instances are either of type car or of type truck. This

is called a covering constraint: the types car and truck cover the type vehicle. This kind

of constraint can be enforced in C++ by declaring the type vehicle to be an abstract data

type, i.e., a type for which there are no (directly accessible) instances.

The second property of a taxonomy is that no two subtypes have a common instance.

For example, car and truck would have no instances in common, if the classi�cation of

vehicle into car and truck is a taxonomy. Such a constraint cannot normally be enforced

by a programming language: there is nothing to stop someone from deriving a type from

both car and truck and then instantiating objects in this new type. It is curious that

taxonomies are often cited as a motivation for inheritance, yet few systems o�er the means

of constraining a set of types to be a taxonomy.

6.2. Private Inheritance

Private inheritance di�ers from other forms of inheritance in not supporting substi-

tutability nor late binding. One can argue that the concept is no more than syntactic sugar.

From our point of view, it represents a private attribute like any other, but one whose set

of names has special properties.

Consider, for example, a class file with a private component filename of type string.

In C++ the de�nition of file would look something like this:

struct file {

/* public members */

private:

string filename;



Kenneth Baclawski page 14

/* other members */

};

If it was decided that the filename component was so important and used so frequently

that it should be given a special status, then one could use private derivation as follows:

struct file : private string {

/* public members */

private:

/* private members */

};

This would permit components of filename to be accessed with a simpler syntax. For

example, filename.length() would become simply length() if no component of file has

this name; otherwise one would have to say string::length(). One way of looking at this

is that the filename component of the �rst de�nition becomes an \unnamed" component

in the second. In other words, private inheritance can be supported entirely by the name

server.

It is interesting to compare private derivation with multiple independent inheritance.

The two are not that di�erent, especially when the components of the private base type are

\publicized" in the derived type. Consider the example in section . Suppose that C and

D were privately derived from B and their attributes publicized. Substitutability and late

binding are not allowed in this case, whereas in the case of multiple independent inheritance,

one can substitute a C for a B but not an E for a B. In other words, private derivation turns

o� substitutability and late binding entirely while multiple independent derivation turns it

o� for multiple derivation but not for single derivation.

7. Conclusion

We have presented a single framework for a large variety of forms of inheritance. Having

classi�ed and compared all the diverse forms of inheritance, one cannot help but speculate

about why the diversity has evolved. One possibility is that all the concepts of inheritance

are approximations to the ideal of instance inheritance, di�ering more because of accidents

of the way that inheritance is speci�ed, or the way that inheritance was intended to be used

rather than being fundamental to the concept. A more likely explanation is that one would

like to have all the properties of inheritance discussed in section , but since they conict with

one another, one is forced to choose which properties will be supported and which properties

will be violated.

8. Appendix: Axioms for the mu model.

A database universe is a quintuple U = (O;A; level; a

0

; a

1

), where O;A are two

countably in�nite sets and level is a function level:O �! f0; 1; 2; : : :g. We refer to

A as the set of attributes and to O as the set of objects of the universe, and we assume



The Structural Semantics of Inheritance page 15

that they are disjoint. The function level is the level function. We postulate the existence

of two distinguished elements of A, denoted by a

0

and a

1

. The attribute a

0

is also called

is_a, while a

1

is also called instance_of. Non-distinguished attributes are called proper

attributes.

A mu database (or simply a database) of the universe U is a �nite ternary relation

D � O�A� O, satisfying the following axioms:

Separation of Levels. For every triple (o; a

1

; o

0

) 2 D, level(o

0

) = level(o) + 1, and

for every triple (o; a; o

0

) 2 D, where a 6= a

1

, level(o) = level(o

0

).

Type Constraint. For every proper attribute a, if (t; a; u) 2 D, (o; a

1

; t) 2 D, and

(o; a; p) 2 D, then (p; a

1

; u) 2 D.

Type Speci�cation. For every proper attribute a, if (o; a; p) 2 D, and if level(o) =

level(p) = 0, then there are types t and u such that (t; a; u) 2 D, (o; a

1

; t) 2 D and

(p; a

1

; u) 2 D.

The type constraint and type speci�cation axioms have di�erent assumptions and con-

clusions, but they have the same diagram:

t

a

�! u

x

?

a

1

x

?

a

1

o

a

�! p

Acyclicity. For any sequence fx

1

; x

2

; : : : ; x

n

g of n > 1 elements of O, if (x

1

; a

0

; x

2

) 2

D, (x

2

; a

0

; x

3

) 2 D, : : : and (x

n�1

; a

0

; x

n

) 2 D, then x

1

6= x

n

.

Inheritance.

Variation A (Attribute Inheritance). For a proper attribute a, if (s; a

0

; t) 2 D and

(t; a; u) 2 D, then (s; a; u) 2 D. Graphically, this looks like this:

u

%

a

x

?

a

s

a

0

�! t

Variation I (Instance Inheritance). If (s; a

0

; t) 2 D and (o; a

1

; s) 2 D, then (o; a

1

; t) 2

D. Graphically, this looks like this:

s

a

0

�! t

x

?

a

1

%

a

1

o



Kenneth Baclawski page 16

Variation O (Object Inheritance). If (o; a

1

; s) 2 D and (s; a

0

; t), then there is a unique

object o

0

such that (o

0

; a

1

; t) 2 D and (o; a

0

; o

0

) 2 D. Graphically it looks like this:

s

a

0

�! t

x

?

a

1

x

?

a

1

o

0

a

0

�! o

Let a

+

0

be the transitive closure of a

0

. In other words, (x; a

+

0

; y) 2 D if and only if either

(x; a

0

; y) 2 D or there exist objects z

1

; : : : ; z

n

such that (x; a

0

; z

1

) 2 D, (z

1

; a

0

; z

2

) 2 D,

: : :, and (z

n

; a

0

; y) 2 D. We say that a

0

is transitive when a

0

= a

+

0

. Let a

�

0

be the reexive,

transitive closure of a

0

. In other words, (x; a

�

0

; y) 2 D if and only if either x = y or

(x; a

+

0

; y) 2 D.

The concept of a trait depends on the inheritance axiom as follows:

Variation A. A trait is a triple (o; t; a) for which there exists a types s and u such that

(o; a

1

; s) 2 D, (s; a

�

0

; t) 2 D and (t; a; u) 2 D.

Variation I. A trait is a triple (o; t; a) for which there exists a type u such that (o; a

1

; t) 2

D and (t; a; u) 2 D.

Variation O. A trait is a triple (o; ft

0

; : : : ; t

n

g; a), where n � 0, for which there exists

a type u such that (o; a

1

; t

0

) 2 D, (t

0

; a

0

; t

1

) 2 D, : : :, and (t

n

; a; u) 2 D.

The last axiom also depends on the variation used for the inheritance axiom.

Uniquely Typed.

Variation A. For every object o such that level(o) = 0, there exists a unique type s

such that (o; a

1

; s) 2 D.

Variation I. For every object o such that level(o) = 0, there exists a unique type s

such that (o; a

1

; s) 2 D and if (o; a

1

; t) 2 D, then (s; a

�

0

; t) 2 D.

Variation O. For every object o such that level(o) = 0,

1. there exists a unique type s such that (o; a

1

; s) 2 D, and

2. there exists a unique object o

0

, (called the most derived object of o) such that

a. (o

0

; a

�

0

; o) 2 D and

b. if (o

00

; a

�

0

; o) 2 D then (o

0

; a

�

0

; o

00

) 2 D.

A recollection is a multivalued function � from O to O such that

1. if o

0

2 �(o), then (o

0

; a

�

0

; o) 2 D, and

2. if o

0

2 �(o) and (o

00

; a

0

; o

0

) 2 D, then o

00

2 �.

A partial recollection is a multivalued function � from O � O to O such that if o

0

2

�(o; t), then o

0

is an instance of t and (o

0

; a

�

0

; o) 2 D.



The Structural Semantics of Inheritance page 17

References

[1] K. Baclawski, The nu& object-oriented semantic data modeling tool: intermediate report,

Northeastern University, College of Computer Science, Technical Report No. NU-CCS-90-18,

1990.

[2] K. Baclawski, T. Mark, R. Newby and R. Ramachandran, The nu& object-oriented semantic

data modeling tool: preliminary report, Northeastern University, College of Computer Science,

Technical Report No. NU-CCS-90-17, 1989.

[3] K. Baclawski and D. Simovici, An algebraic approach to databases with complex objects,

Information Systems, Pergamon Press, 17(1):33{47, 1992.

[4] R. Brachman, \I lied about the trees" or, defaults and de�nitions in knowledge representation,

AI Magazine, pages 80{93, Fall, 1985.

[5] D. Moon, The Common Lisp object-oriented programming language standard, Object-Oriented

Concepts, Databases, and Applications, Edited by W. Kim and F. Lochovsky, ACM Press (Frontier

Series) and Addison-Wesley, Reading, MA, pages 49{78, 1989.

[6] B. Stroustrup, The C++ Programming Language, Addison-Wesley, Reading, MA, 1986.

[7] P. Wegner, Concepts and paradigms of object-oriented programming, OOPS Messenger, 1(1):7{87,

1990.


