
Forms of Containment and Inheritance
in Programming Languages and Databases

Kenneth Baclawski
College of Computer Science

Northeastern University
Boston, MA 02115

1



Outline

• Examples.

• The MU Model.

• Components.

• Instance and Object Inheritance.

• Properties of Inheritance.

• Uniform Treatment of Inheritance.

2



The Many Forms of
Inheritance and Containment

• Component: field, attribute, instance
variable, member,. . .

• Instance of a type or class.

• Taxonomy: classification hierarchy.

• Single inheritance or simple public deriva-
tion.

•Multiple inheritance or virtual public
derivation.

•Multiple independent inheritance.

• Prototype or extension inheritance.

• Private inheritance.

3



The MU Model

1. The Universe. A database is a set of triples

(o, a, p), where o and p are objects and a is an at-

tribute. The universe of all possible objects is denoted

O and the universe of all possible attributes is denoted

A.

2. Types. The organization of objects into types is rep-

resented using a distinguished attribute called instance of

or a1 ∈ A. An object o is an instance of a type t when

(o, a1, t) is in the database.

3. Inheritance. Inheritance is represented with a dis-

tinguished attribute called is a or a0 ∈ A.

When (o, a0, p) is in the database, one says that o is

derived from p.

4



4. Schema. There is a function

level : O −→ {0, 1, 2, . . .}

that stratifies the universe of all objects into

“ordinary objects,” “types,” “meta-types,” and so on.

The attribute a1 relates objects on adjacent levels. All

other attributes relate objects on the same level.

5. Type constraint. If o is an instance of t,

t a−→ u and o a−→ p, then p must be an instance of

u.

6. Type specification. If o a−→ p, then o is an

instance of a type t and p is an instance of a type u

for which t a−→ u.

7. Acyclicity. The directed graph determined by a0
has no cycles.

5



Components

Proper attributes (i.e., those other than a0 or a1) rep-

resent the concept of a component. This includes, for ex-

ample, the C++ concepts of data member, function mem-

ber, operator, conversion, constructor, destructor, and so

on.

Although attributes of the mu model are multivalued

by default, they can be constrained to be single-valued, or

to satisfy cardinality constraints (also called functionality

constraints). The most important of these are:

• Many-to-one (single-valued). Every instance

of t has at most one a-value.

• One-to-many (containment). No two instances

of t have the same a-value.

• One-to-one. Both one-to-many and many-to-one.

• Many-to-many. No constraint is imposed.

• Mandatory. Every instance of t has at least one

a-value.

6



Instance and Object Inheritance

There are two distinct ways of defining inheritance in

the mu model.

8. Instance inheritance. Every instance of a sub-

type is also an instance of any supertype.

9. Object inheritance. An instance of a subtype

is derived from a unique instance of each base type.

Instance inheritance is the intuitive concept of inheri-

tance: this is how one conceptualizes the meaning of the

term. Object inheritance is the actual concept of inheri-

tance as defined and used in object-oriented systems.

7



The axioms for the mu model were given for the case of

instance inheritance. They have to be modified somewhat

for object inheritance. Other important constraints also

depend on which inheritance concept is used.

9. Uniquely typed: instance inheritance. Ev-

ery object on level 0 is an instance of exactly one

“most specific type.”

10. Uniquely typed: object inheritance. The

attribute a1 is single-valued from level 0 to level 1.

8



Properties of Inheritance

• Substitutability. An instance of a subtype can

be regarded as an instance of any supertype.

• Late Binding. One of the unique features of nu&

is that late binding is split into two independent steps:

recollection and name resolution.

– Recollection. The mechanism whereby a sub-

stitution (or succession of substitutions) is undone

is called recollection.

– Name Resolution. A name server is required

for managing the many-to-many relationship be-

tween attributes and their names. This relation-

ship also depends on context.

9



• Performance Independence. If a feature is

not used, then it has no effect on performance.

• Transitivity. If s is derived from t and t is derived

from u, then s is derived from u.

• Independence of Base Objects. A base ob-

ject of a derived object can be regarded accessed as

an object on its own, not just as an object obtained

by substitution from the derived object.

10



Uniform Treatment of Inheritance
The various forms of inheritance can be characterized

within the mu model using cardinality and other constraints.

• Multiple inheritance. The attribute a0 is tran-

sitive and is one-to-many on level 0.

• Single inheritance. The attribute a0 is one-to-

one on level 0 (and many-to-one on level 1).

• Prototype inheritance. The attribute a0 is

transitive and is many-to-many on level 0.

• Multiple independent inheritance. The at-

tribute a0 has no transitivity and is one-to-many on

level 0.

• Taxonomy. The attribute a0 is one-to-one on level

0, and every type that has subtypes is covered by

them.

• Private inheritance. This is represented using

an ordinary attribute since private inheritance does not

support substitutability and late binding. Those fea-

tures that are supported can be handled entirely within

the name server.

11



Conclusion

We have given a single framework for the many diverse

forms of containment and inheritance. This supports re-

search in this area by allowing one to compare these forms

directly with one another in a single system. The mu model

is a simple, yet powerful data model within which one can

give natural representations for not only inheritance mech-

anisms but also the many other mechanisms that are re-

quired by an object-oriented system.

12


