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1. INTRODUCTION 

The concept of a “straightening law” as a means of analyzing the 
structure of particular commutative algebras has appeared independently in 
the work of a number of authors. The purpose of this paper is to introduce a 
systematic theory of algebras endowed with a structure of a lexicographic 
straightening law based on a partially ordered set (or “lexicographic ring” 
for short). Much of the work in the literature dealing with such rings fits 
quite naturally in the context of our theory, and we sketch some of this work. 
Moreover, some of our later results, in particular the Betti number bound (in 
Section 6), may actually be new results even for the special cases of the 
known examples of lexicographic rings. 

The concept of a lexicographic ring as an interesting area of study was 
suggested to this author by DeConcini, who conjectured that a lexicographic 
ring is Cohen-Macaulay if the underlying partially ordered set is so. We 
prove this result in two different ways. It has recently come to our attention 
that this conjecture has also been proved by DeConcini et al. [ 131, using 
deformation theory methods. 

The results of this paper are arranged in two parts. The first part, 
consisting of Sections 2 through 4, is more elementary and uses the 
technique of “combinatorial decompositions” as developed by Garsia and 
this author. The second part, Sections 6 and 7, requires some knowledge of 
homological algebra methods in ring theory. The intermediate Section 5 
discusses some of the known examples of lexicographic rings. In this section 
we also sketch some of the ways that our theory may be extended to more 
general contexts. 

The main result of the first part is the Transfer Theorem 4.3, which 
enables one to transfer combinatorial decompositions from the underlying 
partially ordered set (or more precisely from the corresponding 
Stanley-Reisner ring) to the lexicographic ring. As a result those concepts 
that are expressible in terms of combinatorial decompositions are also 
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transferred, as, for example, the Cohen-Macaulay property and regular 
sequences may be transferred to the lexicographic ring. As a result the theory 
of Cohen-Macaulay ordered sets, introduced by this author and developed 
by Stanley, Reisner, Hochster, Garsia, and this author among others, is seen 
to have a broader range of applicability. 

The main result of the second part of the paper is the Betti number bound, 
Theorem 6.2, which enables us to deduce information about the minimal free 
resolution of the lexicographic ring from information about the underlying 
partially ordered set. Thus we can deduce that the Gorenstein property, as 
well as the Cohen-Macaulay property and sometimes even the type of the 
ring may be transferred from the partially ordered set. 

We employ the following notation in this paper. We write K for a field 
which is arbitrary but fixed throughout the paper, although in many cases we 
require only that K be a Cohen-Macaulay (or possibly regular) ring. All 
rings considered in this paper are Noetherian (hence finitely generated) K- 
algebras, and we will often call them simply rings or algebras. We write N 
for the commutative semigroup of nonnegative integers, Z for the ring of all 
integers, and Q for the field of rational numbers. We write [n] for the set 
{ 1, L.., n}. All simplicial complexes and partially ordered sets considered 
are finite, unless specified otherwise. 

2. COMBINATORIAL DECOMPOSITIONS OF RINGS 

The idea of studying a K-algebra using “combinatorial decompositions” is 
a relatively recent innovation due to Baclawski and Garsia [7, 8, 201, 
although the use of combinatorial techniques in commutative algebra is 
much older, going back at least as far as Hilbert [22). In this section we 
sketch the basic concepts and results, and refer the reader to [7,8] for the 
details. 

A K-algebra R is said to be LN”‘-graded if it can be written as a direct sum 
R = CD”sw R, such that R, = K and R,R, G R,+@ for every v,~ E R\Jm. The 
elements of R, are said to be homogeneous of multidegree v. This concept is 
extended to modules in a straightforward way. An R-module A4 is said to be 
Z”-graded if it can be written as a direct sum M = @vEpmM, such that 
MJ, s Mv+,, for every v, j4 E Z”. We will also write 0QVf for M,. 

The case m = 1 is of particular importance, and every N”‘-graded K- 
algebra R may be regarded as an (iN-) graded K-algebra by defining R, for 
n E N to be @llvll=nRv, where (]v]]=c,v,+... +c,v,, and where c ,,..., c, 
are positive integer constants. We call this an associated graded algebra of 
R. We distinguish the original N”-grading by calling it the multigraded 
structure of R. 

The Hilbert series of a graded K-algebra R is the power series FR(t) = 
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CF!-O dim,@,) t”. Th is series is known to be a rational function of t, and the 
order of the pole of FR(f) at t = 1 is called the K&l dimension of R, 
abbreviated K-dim R. A homogeneous system of parameters for R is a set of 
r = K-dim R homogeneous elements 8, ,..., 0, of positive degree such that 
R/(0, ,..., Or) has Krull dimension zero, i.e., R/(8 i ,.,., 0,) is finite dimensional 
as a vector space over K. A frame for R is an ordered homogeneous system 
of parameters for R. Frames are known to exist for any N-graded algebra, 
but there are I@-graded algebras that have no frames. The following is our 
basic combinatorial decomposition result: 

THEOREM 2.1 (Baclawski and Garsia [7]). Let R be a Jnitely generated 
graded K-algebra of Krull dimension r. Then there is a frame (8, ,..., e,), a 
finite sequence of homogeneous elements (tf,,..., qN), and a function k: [N] + 
(0, L..., r) such that 

(1) the images of nl ,..., n,,, in R/(8 ,,..., S,) form a basis over K; 

(2) every element of R may be expressed in a unique fashion as a sum 
of the form 

where pi is a polynomial in K[X, ,..., X,,,,]; 

t3) fir evevj, tlj(ek(j)+19...9 er) s tel y...9 ekdv 

We will say that a frame (0 , ,..., t9,) is a Rees frame if {vi ,..., Q,,} can be 
found so that property (2) of the above theorem is satisfied. We call 
{r~, ,..., n,,,} a set of separators for the Rees frame (0, ,..., t9,), and we call k(j) 
the level of v,. If in addition, (0, ,..., 0,) and {vi ,..., tf,,,} satisfy property (l), 
we say that the frame is privileged. If R is a graded algebra for which there 
is a Rees frame all of whose separators have level r (such a frame is said to 
be basic), then R is said to be Cohen-Macaulay (abbreviated CM). In this 
case, one can show that every frame is a basic, privileged frame. 

Suppose that the graded ring R has been represented as a quotient K[X]/Z 
of a free polynomial ring K[X] = K[X, 1 1 < i Q n] by an ideal generated by 
homogeneous elements of K[X]. A graded finite free resolution of R over 
K[X] is an exact sequence of the form 

O-F,TF,-,--*s-F, 
&I-l 02 

,,-F,TR-0, 

where each FP is a finite free K[X]-module whose generators are assigned 
degrees in such a way that each $,, is a K[X]-homomorphism that preserves 
degree. One can show that there is a graded finite free resolution which 
simultaneously minimizes rank (FP) for all p and that the resulting resolution 
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is essentially unique. The number of generators of FP of degree q E Z will be 
denoted b,,,(R) or simply b,,,. The sum 6, = jJ,,z 6,,, = rank(F,,) is called 
the pth Betti number of R over K[X]. One can also obtain the numbers 
b,,,(R) by using some homological algebra. Recall that To$‘*l(R, K) is 
isomorphic to the pth homology of the tensor product over K[X] of any 
graded finite free resolution of R with the K[X]-module K= 
K[X]/(X, ,***9 X,). It is easy to see that TorftX1(R, K) is a graded K-module, 
and that b,,,(R) = dim,Zq Tor;tX1(R, K) [8, 9, 331. 

The I-Iilbert Syzygy Theorem states that b,(R) = 0 for p > n, where rr is 
the Krull dimension of K[X]. One can show that if r is the Krull dimension 
of R, then b, # 0 for 0 Q p < II - r. In other words, the length of a minimal 
free resolution of R over K[X] is at least n - r and at most n. If the actual 
length is 1, then the number n - I is called the depth of R. One can show that 
depth (R) is a property only of R and not of the particular presentation of R 
as a quotient K[X]/I, which we used to compute it. Indeed, depth (R) is the 
length of any maximal regular sequence of R, where 8, ,..., 0, is said to be 
regular if each Bi is homogeneous, of positive degree, and not a zero-divisor 
of R/(B, )...) 8,-r). One can also use the depth to give another charac- 
terization of the CM property: the ring R is CM if and only if depth(R) = K- 
dim(R). We summarize these comments in the following: 

PROPOSITION 2.2. Let R be a finitely generated graded K-algebra of 
Krull dimension r. Then the following are equivalent, where di denotes 
deg(t9J: 

(1) R is Cohen-Macaulay; 

(2) for some (every) frame (e, ,..., B,), 

Fdt) = J’,,,, * , . . . r  e,,(t) 

I  

I’r (1 - td% 

i=l 

(3) for some frame (0, ,..., t9,) and some set {rl ,..., qN} of homogeneous 
elements of R, we have 

(a) every element of R may be written in the form 

N 

C VjPj(e, ,..., e,), 
j=l 

where the pj are polynomials in K[X, ,..., Xr] and 

I;&) = x fdeg(“i) 
I 

(1 - td% 
j 
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(4) fir some (every) frame (8, ,..., 0,) of R, the sequence 8, ,,.., 8, is a 
regular sequence of R; 

(5) for some (every) representation of R as a quotient K[X]/I of a free 
polynomial algebra K[X] = K[X, ,..., X,,] by a homogeneous ideal, b,(R) = 0 
for all i > n - r [8, 331. 

3. RINGS WITH STRAIGHTENING LAW 

Let V be a finite set, which we henceforth refer to as the vertex s&t. The 
(free) polynomial ring on a set of indeterminates XV in one-to-one correspon- 
dence with V will be denoted K[X, ] v E V] or more succinctly as K[ V]. The 
monomials in K[ V] form a partially ordered set (poset), under divisibility. 
This poset is isomorphic to the poset J(v) of multisets on elements of V 
under inclusion. When V is [r] we will write J(r) for M( [r]). For a multiset 
S EM(v), we write Xs = nloS X, for the corresponding monomial of K[ V]. 
Although M(v) consists only of multisets, we will sometimes abuse notation 
and refer to its elements as being the monomials Xs. 

A simplicial complex A with vertices from V is a nonempty collection of 
subsets of V called simplices such that if u E A and T G o then 7 E A. Note 
that the empty subset of V is always in A. A simplicial complex may be 
regarded as a poset, under inclusion; and we will write P(A) for the poset of 
nonempty simplices of A. Conversely, if P is a poset, then we may define a 
simplicial complex called the order complex (or chain transform) of P, 
denoted A(P), whose simplices are the chains (totally ordered subsets) of P. 
Starting with a simplicial complex A, the simplicial complex A(P(A)) 
corresponds to the barycentric subdivision of the topological realization of A. 

For a monomial Xs in J’(V), the support of S or of Xs is the subset 
Cl(S) = q (Xs) = {v E V ] Xs is divisible by X,1. For a simplicial complex A, 
we write J(A) for the multisets S whose support is in A. The 
Stanley-Reisner ring of A denoted K[A] is then defined to be K[V]/(X’& 
M(A)). It is easy to see that the images of the monomials in J’(A) form a 
basis of K[A]. This is a special case of the following. 

DEFINITION 3.1. Let R be a K-algebra. A straightening Zaw based on A 
consists of a presentation of R as a quotient ring K[ VI/l such that the 
images of Xs for S EM(A) form a basis of R over K. If I is homogeneous 
with respect to some graded algebra structure on K[V], then we say the 
straightening law is graded. 

For such a ring R, if T E J(V)cn(d), then (the image of) XT in R may 
be written uniquely as a linear combination of monomials Xs in M(A). We 
call this the straightening formula for XT. The monomials Xs in J’(A) are 
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called standard monomials, while the others are nonstandard. Since the 
standard monomials form a vector space basis of R and of K[d], there is a 
vector space isomorphism $: K[d] + R, which maps a standard monomial 
Xs in K[d] to the corresponding standard monomial in R. In general, 4 is 
not an isomorphism of rings, but it will be “close” to one in the sense defined 
in Theorem 4.2 below. The inverse map 4-l: R + K[d] will be denoted IJ/ and 
is called the straightening algorithm of R. The concept of a lexicographic 
ring was introduced independently by DeConcini et al. [ 131 and by Garsia 
[20]. However, our terminology differs from either of theirs. 

The ideal (X’ 6? M(A)) s K[ V] that defines the Stanley-Reisner ring is 
generated by the monomials XT for which T E V is a minimal non-simplex of 
A; i.e., T f?$ A but every proper subset of T is in A. When A is of the form 
A(P), for some poset P, then the minimal non-simplices of A(P) all have 
cardinality 2; hence, the ideal defining K[A(P)] is generated by the quadratic 
monomials X,X,, where o and w  are incomparable in P. We now show that 
every straightening law is equivalent to one based on a simplicial complex of 
the form A(P). 

PROPOSITION 3.2. A ring with a straightening law based on the 
simplicial complex A is isomorphic to a ring with a straightening law based 
on A(P(A)). 

Proof Let R be a ring with a straightening law based on A. By definition 
R is a .quotient K[ VI/l. Write P for the poset P(A). Now the monomials of 
K[X] = K[X, 1 a E P] are of the form X0, . .. X0,, where c1 ,..., on are 
(nonempty) simplices of A. We define a K-algebra homomorphism K[X] --f 
K[ V] by mapping X, to x”, where u E P and x” = n,,,X,. Write 
f: K[X] + R for the composition K[X] + K[ V] + K[ V]/1= R. It is easy to 
see that f is surjective, since the minimal elements {v} of P generate R as a 
K-algebra and X,U, in K[X] gets mapped to X, in R. Therefore R is 
isomorphic to K[X]/Kerdf). W e wish to show that the monomials in 
M(A(P)) form a basis of K[X]/Kerdf). 

A monomial Xs of &(A(P)) may be written in the form X0,X0, . . . X0,, 
where a,?~,? ... 2 cr,, are nonempty simplices of A. The image of such a 
monomial is x”*X”* . . . F’n in R. 

On the other hand, let Xs be a monomial of J(A). By definition these 
form a basis of R. Now define simplices u1 , u2,..., inductively as follows. Let 
u1 be 0(X”) and let Xs2 = Xs/rl. Then define u2 to be q (Xs2) and so on. If 
we continue this process, it eventually stops say with un; and the ui)s satisfy 
u, ?a,2 e-0 2 un and Xs = x”‘r2 . . . XOn. Conversely, if Xs may be written 
in the form rllr* . ..Xrmsuch that t,~t,~..a ?r,,,## and siEA for all 
i, then it is easy to see that n = m and u, = ri for all i. Thus every monomial 
of J(A) is uniquely expressible as the image of a monomial of J(A(P)). 
The result then follows. 1 
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As a result of Proposition 3.2, it suffices to consider rings with a 
straightening law based on simplicial complexes of the form d(P), where P is 
a poset, and we will henceforth do so. Because of this we will abbreviate 
K[d(P)] to simply K[P]. We will also write K[X] for K[X, 1 a E P], relying 
on the context to indicate which poset is intended. The ring K[P] has a 
natural multigrading and a natural frame with respect to this structure. 
Before discussing these we pause to discuss some terminology from the 
theory of partially ordered sets. 

For a poset P, we write p for the poset obtained by adjoining two new 
elements 0 and ‘I to P such that d < x < ‘1 for all x E P. The cardinality of 
the longest chain of P is called the rank of P, denoted r(P). We then extend 
this notion to elements of P by defining the rank of x E P to be r@, x]. The 
elements of P having rank 1, where 1 < I< r(P), form an antichain P,. The 
elements of P, are the minimal elements of P, those of P, are the minimal 
elements of P\P, and so on. When P = P(d) for a simplicial complex d, the 
rank of CJ E P is the same as its cardinality as a subset of the vertex set V. 

Remark 3.3. The rank function on a poset P is a special case of a 
“coloring” of a simplicial complex. Let d be a simplicial complex of rank r 
on a vertex set V. A coloring of d is a function c: V+ [r] such that for all 
aE4 Ic(u)l=I I u , i.e., the colors assigned to the vertices of u are distinct. 
Most of our definitions and results on simplicial complexes of the form d(P) 
extend to colorable complexes. A pure, colorable complex is also called a 
completely balanced complex [6, 361. 

Remark 3.4. Let P be a poset of rank r. Write e, E N’ for the ith 
standard basis element of N’. The natural multigrading of K[P] is the N’- 
grading defined by deg(X,) = ercn) for every a E P. We will use only this 
multigrading on K[P] and gradings associated to it. For variety of notation 
we will often regard a multidegree in N’ as a multiset in J(r) = X( [ r]) in 
the obvious way; i.e., the multiplicity of i E [r] in v E IN’ is v,; and we will 
refer to the elements of J(r) as shapes. 

In K[P] we define 8, to be the homogeneous element CoPP,r(cr)=, X,. One 
can show that (ei,..., 0,) is a frame for the multigraded algebra K[P]. This 
frame is natural in many ways. For some of its nice features see Baclawski 
and Garsia [7]. 

By means of the Stanley-Reisner ring K[P] we may transfer ring-theoretic 
notions to partially ordered sets. For example, a poset P is said to be 
Cohen-Mucuuluy if K[P] is so. A poset P is said to be almost 
Cohen-Mucuuluy if every open interval (x, y)of P is CM, except possibly for 
(6, ‘il. 13,361 TII e original definitions of CM and ACM posets used concepts 
from algebraic topology. For early work in this area see Folkman [ 191 and 
Baclawski [ 1,2]. It was Reisner [ 3 1 ] who (independently) showed that the 
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topological and ring-theoretic concepts coincided. For more recent 
treatments of the theory of CM posets see [3, 7, 20, 361. For the theory of 
CM complexes see also [24, 341. 

As a result of the theory of CM posets as developed in the references 
above, we now have many tools for showing that a poset is CM. The prin- 
cipal example which we mention for later use is the following. A lattice L is 
said to be (upper) semimodular if x, y E L both covering x A y implies that 
x V y covers both x and y. If L is semimodular, then L is CM. For a proof 
using an explicit combinatorial decomposition of K[L] see Garsia [20]. The 
result has also been generalized in various directions. See [3] for some of 
these. 

4. LEXICOGRAPHIC CONDITIONS AND THE TRANSFER THEOREM 

In this section we introduce the concept of an admissible (or 
“lexicographic”) straightening law. Roughly speaking, a straightening 
algorithm is admissible if the straightening formula for a given nonstandard 
monomial is a linear combination of “earlier” monomials. To make the 
concept of “earlier” monomial precise, we need to formalize the concept of 
an admissible partial order on monomials. As we will then see, there exist 
several examples of admissible partial orders, typically defined by some kind 
of lexicographic order. Our main result is that if a ring R has an admissible 
straightening law, then we can “transfer” Rees frames from K[P] to R. This 
“Transfer Theorem” has several immediate consequences, including 
DeConcini’s conjecture. 

Recall that the multidegree of a homogeneous element of K[P] may be 
regarded as an element of A(r), where r = r(P). The multidegree (shape) of 
a monomial w  is denoted n(w). The set of shapes A’(r) = N’ has a natural 
commutative semigroup structure given by addition in N’. We say that a 
partial order < on M(r) is admissible if it satisfies 

(1) if A < u and L’ < V’ then Iz + A’ < v + v’; 
(2) for any L E A(r), {V 1 v < 1) is finite. 

Both conditions are actually stronger than we need, but this definition 
sufftces for all the examples we have in mind. 

Suppose now that we choose one of the associated gradings of K[P]. This 
is equivalent to choosing an additive map ]]a I]:&(r) + N, where l]Jl] is the 
degree of any monomial having shape L. In the special case for which all the 
indeterminates of K[X] are given degree 1, then ]]L]] reduces to the 
cardinality )A] of the shape 1 as a multiset. We say that an admissible order 
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Q is compatible with a grading on K[P] if for every rl, v Ed(r), 1 < v 
implies llLj[ < 11 VII and [IL II < II VII implies I < v. In other words, the admissible 
order is the ordinal sum of the sequence of partially ordered subsets 
14 IIJII = n)* 

We now give some examples of admissible orders. The proof that these are 
admissible is given later. All these are most naturally expressed by writing a 
shape J either in the form of a nonincreasing sequence 1, > 1, > -. - > A, or 
in the form of a nondecreasing sequence rli < 1* < - - - < Lk, where k = IA I 
andI={L ,,..‘, A,} = {A’,..., Lk}. We use the conventions that Iz, = 0 and rZ’ = 
r + 1 for i > k. Our first example is the (ordinary) lexicographic order. We 
say that 2 strict&precedes v, written I <L v, if either llnll < ll,~ll or llnll = llpll 
and there is an index 1 such that I, = v, for i < 1 and I, < v,. To obtain a 
second example, simply replace A, by 1’ in the definition above. We write <L, 
for this order. Our third partial order is reverse lexicographic order. In this 
case we say that L strictly precedes v, written Iz <R v, if either ll1ll < ll~ll or 
11111= ll,~ll and there is an index 1 such that 1, = v, for i > 1 and 1, < vI. As 
with the ordinary lexicographic order, we can modify this order by replacing 
2, by I’ in the definition, obtaining a partial order <R,. Another order that is 
frequently encountered is dominance. We say that A dominates v, and write 
1&, v, if either ~~1~~ > llvll or [ILlI = llvll and for every Z, 1, +Iz, + --. +L,> 
v,+v,+--- + v,. Since 1 >n v implies that 1& v, we lose no generality in 
the context of this paper if we consider only the various lexicographic orders. 
To generate still more examples, we note that if < is admissible and 
compatible with the grading, then if we reverse the order on each subset 
{Al 11111= n}, the result is another admissible order, compatible with the 
grading, since 111 + VII = ~~1~~ + IIvII. W e now prove that the lexicographic 
orders defined above are all admissible. 

PROPOSITION 4.1. The partial orders &, &,, & and GRf on A’(r) are 
admissible. 

ProoJ The second part of the definition of an admissible order trivially 
holds for any order compatible with a grading since {A 1 llLll= n} is finite for 
any n. Thus to show admissibility we need only show that if l[rZ I( = II VII, 
IV II = II v’ II, I. < v and L’ < v’, then L + 1’ < v + v’. We will only prove that 
& is admissible, since the other cases are so similar. First consider the case 
rZ = v. To show that A + rl’ < A+ v’, we may use induction on I,%( and hence 
we may assume that 11 I = 1. In this special case, the result easily follows by 
examining these three cases: (1) 1, ) vi, (2) vi > 1, >A; and (3) A; > Iz,, 
where I is the first index such that A; # vi. Now consider the case 1 < v. Let 
m be the first index such that &,,#v,. Let a=@,>--->&-,), /I= 
(A, 2 -a* >A,,,) and y=(vm>... a~,,,). Then n=a+/3 and v=a+y. 
Decompose 1 and v’ in a similar manner, so that A’ = a’ +/I’ and v’ = 
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a’ + y’. Since /I, < y, and p’, < y’,, it is trivial that j3 +p’ < y + y’. By an 
earlier observation, we have that a + a’ +/I +p’ < a + a’ + y + y’, but this 
inequality is the same as 1 + 1’ < ,U + ~1’. 1 

DEFINITION 4.2. Let R be a K-algebra and P a poset of rank r. A 
lexicographic (or admissible) straightening law on R based on P consists of 

(1) a straightening law on R based on d(P), 

(2) an admissible order < on J(r) such that for every nonstandard 
monomial w  of K[X], the straightening formula for w  is a linear combination 
of monomials whose shapes strictly precede n(w). 

A graded lexicographic straightening law based on P is a lexicographic 
straightening law together with an associated grading of K[P] with respect to 
which the straightening law is graded and the admissible order is compatible. 
A graded lexicographic ring based on P is a ring with a (graded) 
lexicographic straightening law based on P. 

DeConcini et al. [ 131 consider a stronger requirement than we require for 
a ring to be lexicographic. More precisely, let P be a poset of rank r, and let 
{a,, a,,..., ai} be a total ordering of P such that r(u,) < r(q) < ..- < r(a,). 
Each monomial of K[X] may then be written uniquely in the form 
Xb, . . . Xb,, where b, < . . . 
and v = Xc, 

< b, in the total order on P. Let w  = Xb, . . m Xsm 
... Xc, be two such monomials. We say w strongly precedes v tf 

there is an index j such that b, = c1 for i < j and either m = j < 1 or b,, , < 
cj+i in the usual partial order on P. We claim that if w  strongly precedes v 
as above, then n(w) <L, J(v). To see this, note that in the case m = j < I we 
have ]]n(w)]] < I]J(v)]], while if bi = ci for i < j and bj+, < cj+ i, then since 
n(w)’ = r(b,) and Am = r(ci), we have that n(w) <L, n(v). We will say that a 
lexicographic ring with respect to the <r, order is strongly lexicographic if 
every nonstandard monomial w  is a linear combination of monomials that 
strongly precede w. 

Let R be a lexicographic ring based on P. Then the straightening formula 
for a nonstandard monomial w  may be found as follows. Write w  as a 
product Xt,XI, --- X,,, where r(tJ > r(t2) > a.. > r(t,). A violation of 
standardness is a quadratic factor Xt,Xt,+, such that ti and t,,, are not 
comparable in P. To straighten w  we find the first violation X1,Xt,+I, i.e., the 
one for which i is smallest. Now straighten Xt,XI,+, , obtaining a sum 2, cjvj, 
where every n(v,) precedes J(XJ + n(Xt,+,). It is an immediate consequence 
of admissibility, that the shape of every monomial in the right-hand side of 
w  = c, CA, * * * 4,-, v,q+, .+. X,, precedes n(w). Thus we can straighten a 
nonstandard monomial w  by finding the first violation, straightening it, then 
looking for the first violation in each of the resulting terms and so on. By 
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admissibility, this procedure eventually terminates with the straightening 
formula for w. 

We now state the main result of this section. 

TRANSFER THEOREM 4.3. Let P be a poset of rank r, and let R be a 
lexicographic ring based on P. Suppose that (0, ,..., 8,) is a sequence, and 9’ 
is a set, of homogeneous elements of the multigraded algebra K[P]. Suppose 
also that k: Sp + (0, l,..., r) is a fraction. Then, 

(1) if {n6’ ] n E 9, Z E A(k(n))} spans K[P] as a vector space, then 
Ma) NV I v E 9, Z E -4k(tl))l spans R; 

(2) if W'I v  E ~,ZE-n(k(v))l is a basis of K[P], then {4(n) g(0)’ ] 
n E 9, ZEA’(k(n))} is a basis of R. 

In effect, the theorem above is saying that the vector space isomorphism d 
may be used to “transfer” frames, Rees frames and sets of separators from 
K[P] to R. This process is only one-way: w  does not preserve Rees frames, 
in general (see [7, Example 4.41). However, we show’ in Theorem 4.7 that 
certain Rees frames can be transferred from R to K[P]. 

The proof of Theorem 4.3 depends on the following lemma which 
expresses more clearly the sense in which # is a “perturbation” of a ring 
isomorphism: 

STRAIGHTENING LEMMA 4.4. Let fi ,..., fk be homogeneous polynomials in 
the N’-graded algebra K[P]. Then #f, f2 .a* fk) -#Y;) #(f2) ... #dfk) is a 
linear combination of monomials whose shapes strictly precede the sum of the 
shapes of fi, f2 ,..., fk. 

Proof. By the linearity of 4, we may assume that each f, is a monomial. 
In this case fi ... fk is either a monomial or zero depending on whether 
q (f,)U *** u Cl(&) is in d(P) or not. In the former case, #dr, .s. fk) = 
#dt;) . .a #dfk). In the latter case, we have, by definition of a lexicographic 
ring, that (df,) e-q WJ is a linear combination of monomials whose shapes 
strictly precede Izdfi) + v.. + Au,). Since d(fi ..a fk) = 0 in this case, we are 
finished. I 

Proof of Theorem 4.3. We first show the proof of part (1). Let w  be a 
monomial of R. By assumption we may write w(w) as a linear combination 
-w(w) = 2 c,,,qti of elements of {@’ ] q E 9, Z E J(k(n))}. Since v(w), the 
01)s and all elements of 9 are homogeneous, we may assume, by taking the 
homogeneous component of shape A(&w)), that all terms in this linear 
combination have the same shape as w(w). By Lemma 4.4, we have that 
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is a linear combination of monomials whose shapes strictly precede J.(w). 
Since only finitely many shapes precede n(w), we may repeat this argument 
to each term in the difference above and use induction to conclude that w  
may be written as a linear combination of elements of {d(q) ((8)’ ] r~ E 9, 
Z E J(k(q))}. Thus part (1) follows. 

We now examine part (2). We wish to show that {@(q)d(f?)’ 1 q E 9, 
Z E M(k(n))} is a basis of R. Let D cd(r) be a finite order-ideal. Write 
W(D) for the subspace of K[P] spanned by monomials of shape 1 E D. The 
hypothesis of part (2) immediately implies that (~0’ ] n(q0’) E D} is a basis 
of W(D). Now by Lemma 4.4, if we expand d(q) g(8)’ as a linear 
combination of monomials, we will get a linear combination of monomials 
whose shapes precede or equal A(@). Thus if ~(QY?) E D, then all the 
monomials occurring in the expansion of o(q) d(e)’ will have shapes in D. If 
we examine the proof of part (1) we find that we also showed that for any 
finite order-ideal D G A(r), {d(n) #(@I ] n E 9, Z E J(k(n)), A(nti) E D} 
spans #(W(D)). Since W(D) and ((W(D)) have the same dimension over K, 
this set is a basis of #(W(D)). In particular, it is linearly independent in 
#(W(D)). Now suppose that C,,[ c,,,d(r~) g(0)‘= 0 were a dependence 
relation for (#(q)$(@‘}. S’ mce such a relation has only finitely many terms, 
only finitely many shapes occur. By admissibility, these shapes are all in 
some finite order-ideal D in M(r), giving us a dependence relation in W(D). 
We thus have a contradiction, and hence {g(r) 4(e)’ 1 ~1 E Y, Z E A(k(n))} 
is linearly independent in R over K. Since this set already spans by part (l), 
we conclude that it is a basis. 1 

We now give some important consequences of the Transfer Theorem. 

THEOREM 4.5. Let R be a graded lexicographic ring based on P. 
Suppose that (0, ,..., 0,) is a homogeneous regular sequence in the 
multigraded algebra K[P]. Then the corresponding sequence (#(O,),..., $(t3,)) 
is regular in R. 

Proof. We use Stanley’s characterization of regular sequences [35, 
Corollary 3.21. A sequence (r, ,..., rd) of homogeneous elements of positive 
degree in a graded ring R form a regular sequence if and only if 

F&) = I;Rl(rl,...,rd)(t) I 1”1 (1 - tdeg(=9 i= I 
Choose a set 9 of homogeneous elements of K[P] whose images in 

WI/(~, ,***, BJ form a basis over K. Since each 6Zi is homogeneous of 
positive degree, we can use induction to show that {@’ 1 YZ E 9, Z E A(d)} 
spans K[P]. By the regularity of (/3, ,..., 0,) and Stanley’s theorem, { ~0’) is a 
basis of K[P]. By part (2) of the Transfer Theorem, {4(q) d(8)‘] q E 9, 
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Z E-M(d)} is a basis of R over K. Hence F,&) = F&t) nf=, (1 - tdeg@i))-‘, 
where Fp(t) = CIIEY tdegtn). Since {$(q) 4(e)‘} is a basis of R, it follows that 
the images of {4(q) ] q E Sp) span R/($(Z3,),...,#(8,)). Choose a subset 
K s 9 such that the images of {#(r]) ] Q E K} form a basis. By induction on 
degree we have that {d(q) #(@I ] q E 6, Z E J(d)} spans R, since every 4(Or) 
is homogeneous of positive degree. But {1(q) 4(O)’ ] 1 E Y, Z EM(d)} is a 
basis of R. Therefore K = 9, and hence F,,(t) = FR/(~(e,),...,~(ed))(t). 
Combining this with our earlier result we have that 

FR(f) = Rs,(~(e,,,...,oce,,,(t) I ii (1 - fdeg(9, 
i=l 

which is equivalent to the regularity of (d(R,),..., d(BJ), by Stanley’s 
theorem. I 

The following corollary may seem to be an immediate consequence of the 
theorem above, but one should remember that a m&graded algebra of 
positive depth need not have any nonconstant homogeneous nonzero- 
divisors. 

COROLLARY 4.6. Let R be a graded lexicographic ring based on P. Zf P 
is ACM, then depth(R) > depth K[P]. In particular, if P is CM, then R is 
CM. 

Proof: Let (0 i,..., 0,) be the natural homogeneous frame defined in 
Remark 3.4. By [5, Corollary 121, if d = depth K[P], then any sequence of d 
elements of {e i ,..., O,} is a homogeneous regular sequence of the multigraded 
ring K[P]. By Theorem 4.5, depth(R) > d. In particular if P is CM, then 
(0 I ,..., 0,) is a regular sequence by Proposition 2.2(4) (we do not require [5, 
Corollary 121 in this case). By Theorem 4.5, depth(R)= d. By 
Proposition 2.2(4) again, R is CM. m 

The second part of Corollary 4.6 for the special case of a strongly 
lexicographic ring is DeConcini’s conjecture. 

We now consider a partial converse to Theorem 4.3. To state this we need 
some new notation. Suppose that e i,..., 8, and r~ are homogeneous elements 
of the IV-graded algebra K[P] as in Theorem 4.3. Let u1 = $(O,) and 
r = 4(q). Now for S EX([r]), the element v(&rO”) of K[P] will not, in 
general, be homogeneous in K[P]. Thus while we cannot assign a shape to 
<us as an element of R, we can nevertheless formally assign the shape A(?@) 
to &ss. In effect, we assign the shape A(@) to the factorization of <us as a 
product of r and ~1)s. 

THEOREM 4.7. Let R be a lexicographic ring based on a poset P of rank 
r. Suppose that (Us,..., u,) is a Rees frame for R with separators (rl,..., T,,,). 
Suppose that 
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(1) for every i and j, t,~(uJ and w(W are homogeneous in K[P] ; 
(2) for every monomial w in R, whose Rees expansion is given by w = 

CL C sEX(k(jjj cj,s<jas, we have that A(Ca”) precedes or is equal to A(w) 
whenever cj,s # 0. 

Then (~(cJ,),..., ~(0,)) is a Rees frame for K[P] with separators (I,..., 
v/(&J). Moreover, ifR is graded, then (a , ,..., or) is a basic privileged frame if 
and only if (w(~A..., w(o,)> is also a basic privileged frame. In particular, R 
is CM if and only ifK[P] is CM. 

Proof Write qj for w(&jj) and 8, for ~(0~) for all i,j. We will first show 
that {rj@ Ij E [N], S E &k(J)} is a linearly independent set in K[P]. 
Suppose not. Since all the qjBs’s are homogeneous in K[P] by hypothesis 
(l), there is a linear combination 

C cj,SSjp 
i,S 

that vanishes in K[P] and all terms appearing with a nonzero coefftcient 
have the same shape 1. Consider the corresponding expression Cj,s cj+s<jcs 
in R. By the Straightening Lemma 4.4 and hypothesis (l), when we expand 
this expression as a linear combination C,,, d, w of monomials w  in R, the 
monomials which appear have shapes that (strictly) precede A. Each such 
monomial w  has a Rees expansion 

w = c bj,,(w) rjos. 
j,S 

By hypothesis (2), if bj,,(w) # 0, then A(<#) <A(w). Since A(w) < 1, we 
have that all such cjus satisfy L(I$,u”) < 1. Now 

L cj,sTjuS = C dww r = C d,q C bj,s(W) lfjus 
i,S w w j,S 

=C 
( 
x d,bj,s(w) <jos* 

i,S w 1 

Hence c,,~ = C, d,b,,,(w) for all j, S. But every cjus with cj,s # 0 has shape 
1 and no such term appears on the right-hand side above. Thus c,,~ = 0 for 
all j, S; and we conclude that {q,@} is a linearly independent set in K[P]. 

It remains to prove that {vi@} spans K[P] as a vector space. To this end 
we simply reverse the argument in the second half of the proof of 
Theorem 4.3. Using the notation introduced there, we know that for any 
finite order-ideal D GA(r), the elements q,@ having shape A ED are 
linearly independent in W(D). We also know that the elements <,us having 
shape 1 E D form a basis of ((W(D)). Since dim, W(D) = dim, d(W(D)), 
we conclude that {v/P} spans any W(D) and hence all of K[P]. I 
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Theorems 4.3 and 4.7 suggest that there ought to be a sense in which one 
K-algebra can “dominate” another. The proper definition has yet to be 
found. But it should be such that if R dominates R’ then a Rees frame can be 
transferred from R to R’. In Theorem 4.3, K[P] dominates a lexicographic 
ring based on P. In Theorem 4.7, K[P] and R dominate each other. We will 
discuss these ideas in a sequel to this paper. 

We end this section with an unpublished result of DeConcini. The special 
case of this result for which the ring is strongly lexicographic is proved in 
DeConcini et al. [ 131. The proof given there, however, does not appear to 
generalize. 

THEOREM 4.8 (DeConcini). If R is a lexicographic ring with respect to 
an admissible total order, then R is reduced; i.e., for any x E R and n > 1, 
x” = 0 implies that x = 0. 

We remark that all the lexicographic orders mentioned in Proposition 4.1 are 
total orders. In particular, by the remark following Definition 4.2, the 
theorem above applies to strongly lexicographic rings. 

Proof. Let R be a lexicographic ring based on P, whose admissible order 
is total. It sufftces to show that x2 = 0 implies that x = 0. Suppose that 
x2 = 0 but that x # 0. Let y E R be the nonzero homogeneous component of 
x of highest shape. Let A = A(y), and let w(y) = C a# in K[P]. Then 
(w(y))’ = 2 (a,)‘(X’)‘. Thus (v(y))’ # 0. Now every term of x - y has 
shape preceding A. Thus by admissibility, x2 - y2 = (x - y)’ + 2y(x - y) is a 
linear combination of monomials whose shapes precede 2L. By the 
Straightening Lemma 4.4, the same can be said of x2 - #((v(y))‘) and hence 
of I - (w(y))‘. Now x2 = 0, and (v(y))’ is homogeneous of shape 21. 
Thus (w(y))’ = 0, and we have a contradiction. It follows that R is 
reduced. m 

Note that in the proof above we required only that K be a reduced ring. 

5. EXAMPLES AND EXTENSIONS 

In this section we describe some of the many examples of lexicographic 
rings, and suggest some of the ways that our theory may be extended. We 
have made no attempt to be either complete or exhaustive in our survey, as 
this field is a very active one and each example is the subject of an entire 
theory of its own. 
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EXAMPLE 5.1 (The Chain Transform). This example is thoroughly 
discussed in Baclawski and Garsia (71. Let d be a simplicial complex and let 
P = P(d) be its corresponding poset. Then K[d] is a graded lexicographic 
ring based on P. In (7, Corollary 6.31 it is shown that K[d] is CM if and 
only if K[P] is CM. We conjecture that one can choose separators for the 
natural frame of K[d] so that the hypotheses of Theorem 4.7 hold. 

EXAMPLE 5.2 (Partition Rings). Let P be a poset. A P-partition is an 
order-reversing function f: P --) N; that is, if x < y in P, thenf(x) >f(r). We 
say f is a P-partition of n if CxeP f(x) = n. Interpret the elements of P as the 
indeterminates of the free polynomial ring K[X] = K[X, Ip E P]. The 
monomial corresponding to a P-partition f is Xf = n,,,X:,“‘. The 
subalgebra of K[X] generated by the monomials X’ corresponding to the P- 
partitions is called the partition ring of P. Garsia in [20] explicitly 
constructs a basic, privileged frame for the partition ring of P by showing 
that this ring is a graded lexicographic ring based on J(P), the distributive 
lattice of order-ideals of P. 

EXAMPLE 5.3 (The Letter-Place Algebra). This ring was introduced by 
Doubilet et al. [ 171 as a means of developing the invariant theory of the 
symmetric group in a combinatorial (and characteristic-free) manner. The 
letter-place algebra is the component of “step zero” of the Cayley algebra 
(see [ 171). More precisely, fix two positive integers n, m E N. The letter- 
place algebra R = R(m, n) is defined as the free polynomial ring K[X,,, ] 1 < 
i < m, 1 <j < n]. Define a poset P(m, n) as follows. An element of P(m, n) is 
an ordered pair of strictly increasing sequences of the same length, 

(a, < a2 < -9. <ak(b,<b,<...<b,), 

such that a, E [m] and bi E [n] for all i. The partial order is defined 
componentwise: (a, < a2 < ..a < ak 1 b, < b, < ..a < bk) ,< (c, < c2 < .a. < cI 1 
d, <d, < .a. ( d,) if and only if k > I and for all i E [I] we have ai < ci and 
bi < di (“smaller” in P(m, n) means longer length but smaller entries). The 
poset P(m, n) is a distributive lattice isomorphic to J(Q), where Q = [m] X 
[n]\((m, n)). The length of w  = (a, < a2 < ... < ak ( b, < b, < ... < bk), 
written I(w), is the integer k. 

The main result, Theorems 2 and 3, of [ 171, may be expressed in our 
language as asserting that the letter-place algebra is a graded, strongly 
lexicographic ring based on P(m, n). See Stein [37] for generalizations. 

Since the letter-place algebra is just a free polynomial ring, there is 
seemingly little reason for such an elaborate way to describe it. However, the 
monomial basis given by this description of the letter-place algebra is the 
only natural basis of R(m, n) with respect to the action of Gl(m) X Gl(n). 
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See DeConcini and Procesi [ 141. Furthermore, certain quotient rings of the 
letter-place algebra are also strongly lexicographic. We have in mind two 
examples, the first is R/(X, ] p E Q(r)), where Q(r) = {p E P(m, n) ] I(p) > r). 
This quotient ring is the rth determinantal ring of a generic m x n matrix, 
i.e., the quotient of the letter-place algebra by all r x r minors of the matrix 
(Xl,,). The other example is the quotient R/(X, Jp Q q), for some fixed 
q E P(m, n). This quotient ring is related to the coordinate ring of a Schubert 
variety (see Examples 5.4 and 5.5 below). 

An explicit minimal free resolution of the determinantal ring above (in 
characteristic zero) has been given by Lascoux [29]. The fact that this 
resolution is based on a form of straightening law analogous to those of 
Doubilet et al. [ 171 and Disarmenien et al. [ 151 leads one to suspect that 
under suitable conditions the straightening law of a lexicographic ring can be 
“extended” to straightening laws on its syzygy modules. The results of the 
next section were largely motivated by this idea. 

The poset P(m, n) is a distributive lattice. As a result all of the rings 
described above are based on semimodular posets. From this one can show 
that these rings are CM. These rings were originally shown to be CM by 
Eagon and Hochster [ 181. 

EXAMPLE 5.4 (Bracket Rings). We use the ring R(m, n) defined in 
Example 5.3, but instead of forming a quotient ring we consider the 
subalgebra generated by all maximal minors. If we assume that m Q n, then 
these will be the m x m minors of the matrix (X,,, ] 1 Q i < m, 1 Qj < n). We 
write [a, < ... < a,,,], where a, E [n] for all i, for the m x m minor obtained 
by using columns a, ,..., a,. The resulting algebra A(m, n) is called a bracket 
ring and is the (homogeneous) coordinate ring of the Grassmannian 
Gr(m - 1, n - 1) of m-dimensional subspaces of affine n-space, K”. We 
define a poset B(m, n) as follows. The elements of B(m, n) are the brackets 
[a, < ..e < a,], a, E [n], and we write [a, < ... < a,] < [b, < .a. < b,] if 
and only if u, < b, for every i. B(m, n) is isomorphic to J([m] X [n - m]) and 
hence is CM. The ring A(m, n) is a graded strongly lexicographic ring. This 
was first shown by Hodge [25] (see also Hodge and Pedoe [26]) who 
actually considered the more general case of the coordinate ring of a flag 
manifold. As a result we see that A(m, n) is CM. The fact that A(m, n) is 
CM was first shown by Laksov [28] and independently by Hochster [23]. 
Both of these authors used methods different from ours. The first proof using 
“straightening” methods was found by Musili [30]. The work of Musili 
played a role in the development of the ideas of DeConcini et al. [ 131. 

Bracket rings, in general, are obtained by setting some of the brackets 
equal to zero. To be more precise, we need some definitions. A matroid 
structure on [n] is a map f: [n] + S, where S is the set of elements which 
cover or are equal to 0 in a geometric lattice L. We may assume that the 
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supremum off( [n]) is 1. The bracket ring of the matroid structure given by f 
is the quotient ring 

A(m,n)/([a, < a-- <a,] If(a,)V a.. Vf(a,)# I). 

See Crapo and Rota [lo] for the theory of matroids, and see White [39] for 
the theory of bracket rings. The bracket ring is a universal coordinatizing 
ring of a given matroid [38, 391. 

An important special case of a bracket ring is the homogeneous coor- 
dinate ring of a Schubert variety. These are obtained by forming the quotient 

A(m, n)/([a, < ‘0. < a,] 1 [a, < -a- < a,] < [b, < -.. < b,]), 

for a fixed bracket [b, < . -. < b,]. These are always CM by the same 
reasoning used in Example 5.3. However, bracket rings, in general, need not 
be CM. This was shown by White [40]. 

EXAMPLE 5.5 (Homogenized Rings). The rings in Examples 5.3 and 5.4 
are related to one another by a simple process called homogenization. The 
idea is that to an ungraded lexicographic ring R one can associate a graded 
lexicographic ring R’ such that R is obtained from R’ by setting one variable 
in R’ equal to a nonzero constant. 

Let R be a lexicographic ring based on a poset P of rank I, whose 
admissible order is compatible with some associated grading of K[X] = 
K[X, (p E P]. We now define a graded lexicographic ring based on Q, where 
Q = PU {6}. We give 6 rank 0 so that the rank function on P is the 
restriction of that on Q. The new variable will be denoted X0 and has degree 
1. The admissible order is extended to J({O, l,..., r}) as follows. Since we 
want this new admissible order to be compatible with degree, we need only 
consider the set of shapes of a given degree d. For each such shape 1 we 
have a unique decomposition L = L,, + &, where A, E A( (0)) and A, EM(r). 
We say that J precedes 1’ if and only if either (A,, 1 > ] A, 1 or 1 L, ] = 1 Ai ] and 1, 
precedes Al, in d(r). It is straightforward to verify that this order is 
admissible. 

We may now define the graded ring R’. It is the quotient K[X9 I q E Q]/I, 
where I is generated by all polynomials of the form 

where p, q E P are incomparable and h is defined on monomials of K[X] as 
follows. First express a monomial w  as a linear combination of standard 
monomials (necessarily of degree of at most that of w  in R, using the 
straightening formula). Now multiply each term in this linear combination by 
a power of X,, so that the resulting term has the same degree as w. Then add 
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these up. The result is h(w). We call h the homogenization function. Since 0 
is comparable to every element of Q, h(w) is a linear combination of 
standard monomials. It is easy to see that R’ is a graded lexicographic ring 
based on Q and that R E R’/(X, - 1). 

As an example, we note that B(m, n) has a maximum element [n - m + 
1 < *a* < n] and that P(m, n - m) U {6} ES B(m, n)*. Now A(m, n) is also a 
graded lexicographic ring based on B(m, n)*, by dualizing (reversing) the 
admissible order on shapes of each degree. Furthermore R(m, n - m) = 
A(m,n)/([n-m+l<...<n]- 1). To see why we consider the matrix 

A maximal minor of this matrix is an arbitrary minor of the submatrix 
(X,,, ] 1 < i < m, 1 Q j < n - m), the only exception being the minor 
consisting of the last m columns, [n - m + 1 < . . . < n], is simply the 
constant 1 (which could be interpreted as the determinant of the minor 
consisting of no columns and no rows). See DeConcini et al. [ 121 for the 
proof that these two rings are isomorphic. Note that although R(m, n - m) 
and A(m, n) are both graded algebras, the isomorphism does not preserve 
this structure. 

Remark 5.6 (More General Coefficient Rings). As we remarked in 
Section 1, the field K may be replaced by a ring, and under suitable 
hypotheses the results of Section 4 still hold. One may even consider rings, 
K, which are themselves multigraded K-algebras. In other words, the 
elements of K may be sums of elements having nontrivial shape. To be more 
precise, let P be a poset of rank r, and let K be an IN’-graded K-algebra. A 
lexicographic ring R based on P consists of the following: 

(1) a K-module isomorphism #: K[P] + R, 
(2) an admissible order on d(r) such that if the straightening formula 

of a nonstandard monomial Xi is C, (x,X’, where each X’ is standard and 
aJ E K, and if the nonzero homogeneous components of a, are {a,,L}, then 
A(a,,,) + A(X’) precedes Iz(X’) for every J and L. 

Remark 5.7 (Lexicographic Modules). The concept of a lexicographic 
ring generalizes quite naturally to modules. Suppose that M is a module over 
K[a, ,..., a,] and that P is a poset of rank r. We say that A4 is a lexicographic 
module if there is an N’-graded module N over K[P] and a vector space 
isomorphism 4: N+M such that for any i and homogeneous m EN, 
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4-‘(4(eim) - aid(m)) is a linear combination of homogeneous elements of 
shape preceding A(@,) + n(m). Since the Transfer Theorem and the 
Cohen-Macaulay property are concerned only with the structure of the ring 
as a module over a frame, there is no difficulty extending our theory in 
Section 4 to lexicographic modules. 

Examples of such modules have apparently been found by DeConcini [ 111 
who studies the symplectic analogue of the work of Hodge and of DoubilCt 
et al. He bases his lexicographic rings on a “Stanley-Reisner ring” over a 
structure more general than that of a poset. For a more “geometric” 
approach to the study of these rings (and even more general ones) see 
LakshmiBai et al. [27]. 

6. BET~I NUMBERS 

We now show that among all lexicographic rings based on P, the 
Stanley-Reisner ring K[P] has the largest Betti numbers. Some of the results 
in Section 4 may be given new proofs using this fact. Moreover, we can find 
new results, involving the canonical module, by using our Betti number 
bound. 

We begin with a technical result. In this theorem we employ the following 
notation. Suppose that W is a vector space (over K) which has a decom- 
position W = avca W(V), where Q is a finite poset. An element w  of W is 
said to be Q-homogeneous if it is in one of the W(v) and in this case we say 
its shape is v=n(w). 

THEOREM 6.1. Let {C,) be a sequence of finite-dimensional K-vector 
spaces which has two structures of a (algebraic) complex given by maps 
a,: c, + c,- 1 and maps 8;: C, + C,-, , respectively. Suppose also that each 
C, has a decomposition C, = olsp C,(A) with respect to some finite poset 
Q. Assume that 

(1) for every n, 2, a,(C,@)) c C,-,(A), 
(2) for every n, A and w E C,(J), 

G(w) - a,(w) E CD C,-,(v). 
U<l 

Then there is a structure of a complex on {H,(C,, a)} given by maps’ 
6,: H,, + H,- , such that 

H,,W,, 6) z H,(C, , a’). 
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Proof. For any order-ideal D c Q, write C,(D) for olcD C,(A). 
Hypotheses (1) and (2) ensure that i?,(C,(D)) G C,-,(D) and &(C,(D)) G 
C,-,(D). Moreover, the hypotheses of the theorem also hold with C* 
replaced by C,(D) and a,, 3; replaced by the restrictions a,,,, a;,, . Thus 
we may use induction on order-ideals of Q. 

We will first show by induction that rank@,) 2 rank@,), for every n. (The 
rank of a linear map is the dimension of its image.) For simplicity we will 
drop the subscript n in the following argument. Suppose that rank(&) > 
rank@,) for some order-ideal D G Q. Let I be a minimal element of Q\D. 
We will show that rank(&) > rank@,), where E = D U {A}. 

To this end we define sA to be the map s,, = 8; - a,: C,(A) + C,-,(D). 
This map is well defined by hypothesis (2). Next define the subspace U(A) = 
Ker(8,) n s;‘(Im(L$,)). We now choose a basis {w,} for U(A). By definition, 
each such element is in s;‘(Im(&,)), i.e., sA(wJ E Im(8;). Choose an element 
y, E C,(E) such that sA(wJ = &,(JJJ f or each i. We then use these choices to 
define a linear map h: U(A)+ C,(D) by h(C qw,) = ,YJ a,~,. By linearity, 
sA(w) = a;@(w)) for every w  E U(A). Finally, we define a map $: U(A) @ 
Ker@,) + C,(D) by $(w + x) = w  - h(w) +x for w  E U(A) and x E Ker(&). 

We now check that Im@) E Ker@‘,J. To this end, we compute 
aglqw +x)) = a’(w - h(w) +x) = al(w) + ag(x -h(w)) = a;(w) + i&(x) - 
tJb(h(w)) = a,(w) + s*(w) + a;(x) - s,(w) = a,(w) + i&(x) = 0, since 
w  E U(A) G Ker(8,) and x E Ker(&). 

Next we show that Ker&) = Im(/). Let w  + x be in Ker&), where w  E 
C,(A) and x E C,(D). Now l&(w +x) = a;(w) + &j(x) = a,(w) + sA(w) + 
a;(x). Since ah(x) + s*(x) E C,-,(D), the element w  + x can be in Ker(&) if 
and only if a,(w) = 0 and -s,(w) = a;(x). In particular, for such an element 
we have that w  E Ker(3,) r7 s, ‘(Im(&)) = U(A). Thus h(w) is defined. It is 
easy to check that x + h(w) E Ker(a;) and that )(w +x + h(w)) = w  + x. 
Thus Ker&) = Im(#) as desired. Since 4 is obviously injective, we then have 
that dim,(Ker&)) = dim,@(A)) + dim,(Ker(&)). 

Let c, = dim,(C,(D)). Similarly define c, and c,. We know by the 
inductive hypothesis that rank(&) > rank(&). Then 

rank(8;) = c, - dim,(Ker&)) 

= c, - dim,(U(A)) - dim,(Ker(&)) 

= cA - dim,(U(A)) + c, - dim,(Ker@L)) 

> cA - dim,(Ker(a,)) + c, - dim,(Ker@b)) 

= rank@,) + rank(&) 

2 rank@,) + rank(&) 

= rank@,). 
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The last equality is a consequence of the fact that 8, = aA 0 8,. Thus by 
induction, rank(&) > rank@,) for every n. 

In fact, we see that the above discussion may be used to compute 
rank(Zb). One simply arranges the elements of Q in a sequence 1, ,..., 1, in 
such a way that Ai < lj + i < j. Next define U, = U(A,) using the order-ideal 
D = {A, ,..., Ai-, ] as we did above. Then 

rank&) = dim,(C,) - i dim,(U,). 
i=l 

We are now in a position to prove the theorem. Choose splittings C, = 
B, @ E, @D, = B:, @E; @D’, so that B, = Im(a,+ i), B; = Im(Z$+ ,), 
8, @ E, = Ker(a,), B; @ Ei = Ker(&), 8,: D, 3 B,,- i, and 8:: 0: 3 BL- *. 
Note that H,(C, , a) z E,, H,(C, , a’) r EL, dim(B,) 4 dim(B’,), dim(E,) 2 
dim(E’,) and dim(D,) < dim(D;). Now choose injective maps &: D, --) 0; 
and splittings 0: = B,,(D,) @ 0:. Since a&: 0; ry Bb- , , dim(8b&(D,))) = 
dim(D,) = dim(B,- ,). Thus we may choose an injective map a,: B, + Bk so 
that a,(B,) = a:, + ,(p,, + ,(D, + J). Furthermore, the splitting D, + , = 
P,+,@‘n+,)@DZ+, may be transferred to B, via al,,, , so that Bi = 
a,@,,) 0 BZ, where Bt is defined as a~+,(D~+,). It is easy to check that 
dim(E,) = dim(Bz @EL @ D’,‘). Thus we may choose isomorphisms yn: E, Y 
Bi @ Eh @ 0:. Note that since B, = a,,, l(D, + ,), we have aJan+ ,(D, + 1)) = 
a:+ ,@,,+ ,(D,+ ;)). We may combine a,, /3, and ya to get an automorphism 

w,: C, = B, @ E, 0 D, cs a,(B,) 0 BlO Ek 0 DZ 0 P,(D,) 

=B:,@E:,@D:, 

= C”. 

Finally, we define 6,: C, --) C,,- I by 6, = cc;!, 0 a; o w,, so that this 
diagram commutes: 

C” w, c, 
6” 1 1 a: 
c,-, 0,-I c,-,. 

Since every o, is an automorphism, (C,, 6) is a complex isomorphic to 
(C, , a’). 

We now show that for every n we have the inclusions 

Im(a,,+ ,) E Im(6,. i) C_ Ker(G,) G Ker(3,). (*I 
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To this end, let b E B, = Im(a,+ ,). Then w,(b) = a,(b) E B; = Im#,+ 1). 
Thus there is some a E C,, , such that a;+ ,(a) = w,(b). We then compute 
that a,+ ,(a;; ,(a)) = o;‘(&+ ,(a)) = w;‘(w,(b)) = b. Hence b E Im(S,+ ,). 
This gives the first inclusion of (*). The third inclusion of (*) is given by a 
similar calculation, and the second inclusion is a consequence of the fact that 
6,06,+1=o. 

Now the inclusions in (*) immediately imply that G,,(Ker(a,)) c Im(6,) E 
Ker(a,,- J and that 6,(Im@,+ 1)) c S,(Ker(G,)) = (0) G Im(8,). Thus for 
every n, 6, induces a map 

8n: H,(C, ,a) --t H,- ,(C*, 0 

This sequence of maps obviously defines a structure of a complex on 
{H,(C,, a)}. The map a:, restricts to a map 

a~:B::OE:,OD::jB~_,OE:,_,OD~_,, 

because 8; D$ = B; _, . The construction of the automorphism w, then 
ensures that 

is the restriction of 6,. Thus we have a commutative diagram 

B;@E:,@D; a’ -B;-,OE;-,OD:-, 

I / / 
H,(C*, a) 3 

I 
H,-,(C*,% 

where the vertical isomorphisms are induced by yn and y,,- , , respectively. 
Since we have aI = Bi-, and Ker@;) = Bz @ Eb, it follows that 

H,(H,(C, , a), 8,) = 4,. 

Finally, by the choice of Eb, we have E; g H,(C*, a’). The theorem then 
follows. I 

We now come to the main result of this section, which asserts that the 
graded Betti numbers of a graded lexicographic ring over P are bounded by 
the corresponding Betti numbers of the Stanley-Reisner ring K[P]. 
Moreover, they are bounded in a special manner to be described below that 
restricts the possible sets of Betti numbers even more. 

THEOREM 6.2. Let R be a graded lexicographic ring bused on P. Then 
for every integer m there is a structure of a complex on Zm Toi$tX’(KIP], K), 
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whose nth homology is isomorphic to Zm To$tX1(R, K). In particular, for 
every m and n, we have b,,,(R) < b,,,(K[P]); and for every n, we have 
b,(R) G WWI). 

ProoJ We begin by describing the Koszul complex of {X, 1 p E P} over 
K[X]. This complex is a minimal finite free resolution of K over K[X]. The 
nth free module F, in the Koszul complex has a basis {e(S) 1 S c P, 1 S ) = n } 
over K[X]. Choose a total order on the elements of P. If S G P and p E P, 
we write m(p, S) for the number of elements of S that strictly precede p in 
the chosen total order on P. The structure map a,: F, + F,-, of the Koszul 
complex may be expressed as 

a,(e(S)) = x (-l)“‘p,s’ X,etS\{pl). 
PCS 

We define the degree of e(S) as deg(e(S)) = Cpss deg(X,); with this 
definition, the F, become graded modules over K[X], and the maps 8, are 
homogeneous degree-preserving maps. 

We now tensor the Koszul complex with K[P] and with R. Now as graded 
vector spaces, F, OKtX, K[P] and I;,, @K,Xl R are identical. Thus we are in 
the situation of Theorem 6.1, i.e., we have two structures of a complex on 
C* = F, @ K[P]. These complexes may be described as follows. A basis 
element of C, (over K) has the form X’e(S), where I E J(d(P)), S E P and 
1 SI = n. We define the shape of X’e(S) to be n(x’e(S)) = J(X’) + CpEs L(Xp). 
The structure map a,, for F* @ K[P] is given by 

a,(X’e(S)) = 5’ 
PZ 

(-l)“‘p~“‘X’x,e(S\{p}). 

q WJIPIEAW) 

Clearly, 8, preserves shapes. The structure map 8: for F, @ R is the same as 
3, except that when Cl(I) U {p} 6? d(P) we replace X’X, by its straightening 
formula. Each term appearing in this linear combination has a shape that 
strictly precedes n(X’) + n(Xp). Multiplying this straightening formula by 
e(S\{p}) simply adds the shape L(e($\{p})) to every term. By the 
admissibility of the partial order on shapes, we conclude that 
6% - 4JKW~>) is a linear combination of terms whose shapes strictly 
precede n(X’e(S)). 

Thus the hypotheses of Theorem 6.1 are satisfied except for the finiteness 
of Q and the finite dimensionality of C,. However, we can apply 
Theorem 6.1 to each homogeneous component of C* and then combine 
these, since all the structure maps are homogeneous and preserve degree. 
Since G%?$~ TorftX1(KIP], K) = H,(ZmC*, a) and Zm TorztX1(R, K) = 
H,(&F”, C, , a’), the result follows. I 
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An immediate consequence of Theorem 6.2 is that Corollary 4.6 holds 
without the requirement that the poset P be ACM. We also obtain another 
proof of DeConcini’s conjecture. 

Because of Theorem 6.2, it is of interest to know the graded Betti numbers 
of a Stanley-Reisner ring. To compute these, we need to introduce the 
(topological) cohomology of a simplicial complex. Let A be a simplicial 
complex on a vertex set V. Choose a total order on V. We define a 
cocomplex (C*, 6) as follows: CR is the vector subspace of K[A] spanned by 
{X’ ) Z E A, )I) = n + 1 } and 6”: C” + C”+ ’ is the linear map defined by 
S”(P) = c VE~,N(V)EA (-l)m(““)px~* where m(t), I) is the number of 
elements of Z that strictly precede V. The nth reduced cohomology of A is 
then defined to be the nth cohomology of (C*, 6). This is not the usual way 
that one defines Z?“(A, K), but it is easy to see that it is equivalent to the 
standard approach. The dimension of @(A, K) is written /i,(d, K) and is 
called the nth reduced Betti number of A over K. 

We need one more bit of notation. If we give K[P] one of its associated 
gradings, we write deg(S) for deg(Xs), where S is any subset of P. We now 
state our computation. 

PROPOSITION 6.3 (Hochster). Let P be a finite poset. Then 

bn,mWIPl) = c /ils,-n-,(A(S),K), 
SSP 

degW=m 

WWI) = c /is,-n&W, K). 
SGP 

Actually, Hochster [24] only computed the second formula above, but did so 
for any simplicial complex, not just one of the form A(P). 

Proof. We use the complex (C,, a) defined in the proof of Theorem 6.2 
to compute z”, ToI$~~(K[P], K). The structure map of this complex 
preserves more than just shape, it preserves the content of a basis element 
X’e(S), where content(X’e(S)) is the multiset Z + S. 

Now the restriction of the Koszul complex to a particular content 
T Ed may be expressed as follows. The structure map is given on basis 
elements by %@e(s)> = ~p~S.D(r)u~p)~A(P) (-l)m’p*S’ ~xpe(S\{r,i), where 
n = (S]. We now define A = Cl(T) and B = m so that T is the multiset 
union of A and B. The elements of B are the repeated elements of the 
multiset T. Let C = Cl(B). Now in the term X’e(S), S is a set and T = Z + S. 
Thus B is a submultiset of Z, i.e., X’ = XJXB for some J G A. Note that J has 
no multiplicities since B already accounts for these. Finally, we observe that 
since the content T is fixed, once we know J = m, we can reconstruct the 
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basis element X’e(S). Thus if we “factor out” P and suppress e(S)%, the 
map a, map be expressed as 

where n = ]Av]. The condition CUJU (p} E d(A) is equivalent to JU 
{p} E star,,,,(C) = {D ] D u C E d(A)}. Looking at the definition of the 
reduced cohomology of star,(,) (C), we see that ZrTor~tX1(KIP],K)~ 
A’“‘-“-‘(star,,,,(C), K), where “XT” means the homogeneous part of 
content T. Now star,(,) (C) is acyclic if C # 0. Thus we may assume that 
the content T is a set. In this case A = T so that &“T Torft*l(K[P], K) z 
g”-“-‘(d(T),K). The proposition now follows since 3, = 

deeu)=m~. .I 

7. CANONICAL MODULES AND GORENSTEIN RINGS 

Let R be a CM graded K-algebra. If we dualize a minimal free resolution 
of R, the result will be a minimal free resolution of a graded module over R 
called the canonical module of R, written R(R). Although one must use a 
presentation of R as a quotient of a free polynomial ring in order to compute 
Q(R), up to a shift in degree a(R) depends only on R. Thus any information 
about R(R) is a property of R alone (unlike the Betti numbers, for example). 
One such concept is the type of R which is defined to be the multiset of 
degrees of a minimal set of generators of R(R) as a module over R. Our 
definition differs slightly from the standard one, which we would denote by 
1 type(R i.e., the minimum number of generators of Q(R) over R. The ring 
R is said to be Gorenstein if ] type(R)) = 1. In this case one can show that R 
is isomorphic to R(R) by a homogeneous map of degree m, where {m} = 
type(R) depends on the presentation of R. See Herzog and Kunz [21]. Now 
it is an easy consequence of Theorem 6.2 that if R is a graded lexicographic 
ring based on a Gorenstein poset, then R is also Gorenstein. We will show 
that the converse also holds in certain circumstances, but first we must 
introduce a new concept. 

Let P be a finite poset, and let k > 0 be an integer. We say that P is k- 
Cohen-Macaulay connected (or simply k-CM) if for every S c P such that 
ISI <k, we have 

(1) P\S is CM, and 
(2) r(P\S) = r(P). 

This concept was introduced by the author in 141. Among other examples, it 
was shown there that if P is a geometric lattice, then P is doubly CM; 
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moreover, for such posets one can give a simple characterization of the k- 
CM property for k > 2. Thus examples of k-CM posets for any k are readily 
found. Our main result connecting the theory of doubly CM posets with 
rings is the following theorem. To state this result, we need to recall that the 
reduced Euler characteristic, written p(P), of a poset is the alternating sum 
c:= - 1 t-1)” li,MP), a. 

THEOREM 1.1. Let P be a 2-CM pose& and let R be a graded 
lexicographic ring based on P. Then as multisets type(R) = type(K[P]). 
Moreover, in this case (type(R)] = Ip(P In particular, R is Gorenstein if 
and only ifp(P) = f 1. 

Proof Let r = r(P), n = JP] - r and d = deg(P). By [4, Theorem 4.51 and 
Proposition 6.3, if P is 2-CM, then 

b,,,W’l) = W’-‘P(P), if m=d 

= 0, otherwise. 

Thus there is only one nonzero homogeneous component of 
ToctX1(KIP], K), and it has degree d. Moreover since P is the only subset of 
P having degree d, and since P is CM, we also have that brJK[P]) = 0 for 
every p # n. We now apply Theorem 6.2 to conclude that b&R) = 
b,,,(K[P]) = (-l)‘-’ p(P) and that b,,,(R) = b,,,(K[P]) = 0 for m # d. We 
conclude that TorfftX1(KIP], K) and To<t*r(R, K) are isomorphic as graded 
vector spaces. Thus type(R) = type(K[P]) and )type(R)( = ]p(P)]. The rest of 
the theorem now follows from these equations and our earlier remarks. 1 

One can produce further refinements of the result in Theorem 7.1 by 
assuming that P is k-CM for some k > 2. We will consider just the next case 
in the following theorem. 

THEOREM 7.2. Let R be a graded lexicographic ring based on a 3-CM 
poset P. Then 

(1) the minimum number of generators of a(R) is [p(R)], 

(2) the minimum number of relations in the presentation of 0(R) over 
WI is CxEp W\Wl- 

We might add that the degree of each generator of s)(R) is (-deg(P)) while 
the ]p(P\{x})] relations supplied by the subset P\{x) are each of degree 
(-deg(P\{x})). Also if we make use of the incidence algebra Z(P, Q) of P as 
introduced by Rota [32], then we may also express the minimum number of 
relations as (]P] + 2) I&P)] + I@ * r)(& f)(. 
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Proof: Part (l), of course, just follows from Theorem 7.1. The second 
part follows from the case k = 3 of [4, Theorem 4.51 by exactly the same 
proof as in Theorem 7.1 above. 1 
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