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1. INTRODUCTION 

The purpose of this paper is to introduce a new kind of partially ordered 
set: the Cohen-Macaulay poset. It is now known that this concept provides 
some interesting connections among Algebraic Topology, Combinatorics, 
Commutative Algebra and Homological Algebra, and numerous individuals 
have contributed to the theory. Some of these are Stanley [35, 36, 371, Reisner 
[26], Hochster [21] and Garsia [17]. 

The notion of a Cohen-Macaulay poset originated in the author’s thesis [2], 
and many of the results of this paper are also there in some form. The original 
motivation for introducing this concept was to provide a reasonable setting 
for the results of [I] and to find techniques for proving unimodality theorems. 
The Rank Selection Theorem (5.4) h a d much to do with this. At the time we 
referred to these posets as Folkman posets because of Folkman’s work in [16]. 
The term “Cohen-Macaulay” was later suggested by Kempf, who pointed out 
the relationship with the theory of Local Cohomology as, for example, in [22]. 

The basic tool for proving our results is the theory of homology of diagrams 
on posets. Diagrams, even without homology, are related to certain purely 
combinatorial constructions. For an example of this see [4]. By using diagrams 
in more sophisticated ways one can prove some quite interesting combinatorial 
theorems, as was done for example in [6] using results from [3]. 

Although we have consistently used poset homology to prove the results in 
this paper, one could also prove them using ring theory methods. In a joint 
paper with Garsia [7], the latter approach is employed. The fact that one can 
define Cohen-Macaulay posets using either homology theory or ring theory 
is a consequence of a remarkable theorem of Reisner [26]. An “elementary” 
proof of this important theorem appears in [7]. 

One of the most dramatic applications of Cohen-Macaulay posets (or more 
precisely of Cohen-Macaulay complexes) is the proof by Stanley [35] of the 
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Upper Bound Conjecture for Spheres. Although we will not discuss his result 
here, it was certainly one of the main motivations for the development of our 
theory. 

This paper is organized as follows. In Section 2 we introduce the terminology 
and background of poset homology that we require in the paper. In the next 
section we define the notions of Cohen-Macaulay and of almost Cohen- 
Macaulay posets and prove some elementary results about them. We then go 
on to describe the two spectral sequences which we later use to prove our main 
theorems. For more detail about these spectral sequences we refer to our earlier 
papers [l] and [3]. 

In Section 4 we describe some of the many classes of posets that are known 
to be Cohen-Macaulay, and we describe what is known about the relationship 
of the Cohen-Macaulay property to other properties of posets. Semimodular 
lattices, (locally) semimodular posets and shellable posets are all examples of 
Cohen-Macaulay posets. 

The next two sections describe two constructions that preserve the Cohen- 
Macaulay property: rank selection and fibration. A rank-selected subposet is 
one that is obtained by deleting all the elements of specified ranks from another 
poset. The rank selection theorem allows us to give some new characterizations 
of the Cohen-Macaulay property. Fibration, on the other hand, is a method 
of building a poset from smaller posets. This method is quite useful for proving 
that particular posets are Cohen-Macaulay. 

In Section 7 we consider some operations that preserve the Cohen-Macaulay 
property. These include product, interval poset and replication. 

In the last section we prove a “homotopy theorem” for Cohen-Macaulay 
posets. This result is analogous to the Tutte Homotopy Theorem in Matroid 
Theory. Our result may be interpreted as saying that Cohen-Macaulay posets 
obey a weak semi-modularity condition. 

2. POSETS AND DIAGRAMS 

We begin by discussing some of the basic background we require. We caution 
the reader that, in order to avoid unwieldy notation, we have abbreviated some 
standard terms. 

Posets 

For the most part we will restrict our attention to finite posets P with the 
property that the elements of P may be arranged on “levels” or “ranks”. To 
be more precise we need some auxiliary concepts. A chain of P is a totally 
ordered subset of P. We will usually write x1 < *** < x, for a typical chain of P. 
The rank of a chain is the number of elements in it; thus T(X~ < *** < x,) = n. 

481/6311-x6 
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More generally, the rank of P, written Y(P), is the rank of the longest chain of P. 
The length of P, written Z(P), is given by Z(P) = r(P) - 1. The length is a 
more topological notion whereas the rank seems to be more combinatorial. 
Apparently topologists start counting at zero while combinatorialists prefer 
to begin at 1. We will do both. A poset P is said to be ranked if every maximal 
chain has rank r(P). 

Given a poset P, we will write P for the poset obtained by adjoining a new 
pair of elements to P, written 6, i such that 6 < x < ‘i for all x E P. If we 
only require that 6 or “I be adjoined, we will write Ps or Pi respectively. We 
use the convention that 6 or ] is never an element of P. The context should 
indicate to which poset 6 or 1 is to be adjoined. 

A subset J _C P will be called an order-ideal if for every x E J, y < x implies 
y E J. The dual definition gives the concept of an order-jilter. The order-ideal 
generated by a subset S C P will be denoted J(S) or Jp(S); while V(S) = 
V,(S) denotes the order-filter generated by S. The special case J(x) for x E P 
can also be denoted (6, x]. If P is ranked, then so is every subset J(x), and we 
write Y(X) for r(J(x)). The function r takes values in the set [r(P)] which by 
definition denotes (1,2,..., r(P)>. The length of an open interval will be denoted 
Z(x, y) instead of Z((x, y)). 

We will often use the Mobius function as defined by Rota [28]. However, 
we will use slightly different notation. For a poset P we write p(P) for &,I) 
as computed in p. For x E P we will write p(x) or pP(x) for p( J(x)). Finally, 
for x \< y in P we will think of ~(x, y) as an abbreviation for P((x, y)), which 
fortunately coincides with the notation in [28]. 

Simplicial Complexes 

For a finite set S, let B(S) denote the poset of nonempty subsets of S. A 
finite simplicial complex is an order-ideal of B(S). The minimal elements are 
called vertices and elements in general are called simplices. Much of what we 
do in the sequel may be extended routinely to simplicial complexes. As we have 
defined it, a simplicial complex is a special kind of poset. However, given 
a finite poset P, we can define the order complex of P, denoted A(P), to be the 
subset of B(P) consisting of the nonempty chains of P. By this device one may 
view posets as a special kind of simplicial complex. By applying “A” to the 
theorems in this paper one can get new theorems which often generalize to 
simplicial complexes either in general or having some suitable additional 
structure. 

For example, if P is ranked, then A(P) has the property that every maximal 
simplex contains the same number of vertices. A simplicial complex with this 
property is said to be pure. The rank function Y on P allows one to partition 
the vertices of A(P) into disjoint subsets, each of which meets every maximal 
simplex just once. A simplicial complex with such a partition is said to be 
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completely balanced. The notation is due to Stanley [37]. More generally he 
calls a simplicial complex balanced of type (a, ,..., a,) if its vertex set V may be 
partitioned into subsets V, ,..., V, such that each Vi meets every maximal 
simplex in a, vertices. Much of our theory generalizes easily to balanced 
complexes. 

Another poset notion that has an analog for simplicial complexes is that of 
an open interval. For a simplex u of a simplicial complex d, the link of cr, written 
linkA( is the simplicial complex link,(a) = {T E d ] r n 0 = m and 7 u u E A}. 

We also view d itself as a link: d = link,( @a). It is easy to see that link,(a) is 
isomorphic to the open interval (a, 1) A in o^ viewed as a poset. Conversely, it is 
easy to see that for any open interval (x, y) of p, ,4(x, y) is a link of d(P). 

We end by mentioning that every simplicial complex d has an associated 
topological space called the geometric realization 1 A 1 of A, and A is said to 
triangulate 1 A I. For a definition of 1 A I see for example Spanier [30, Section 3.11. 

Diagrams 

Henceforth we fix a choice of a field K with respect to which all homology 
and related concepts will be taken, unless specified otherwise. A (commutative) 
diagram is a set of vector spaces and homomorphisms between them such that 
if one can traverse the diagram from one vector space to another then the 
composition of the homomorphisms encountered along the way does not 
depend on the path taken between the two vector spaces. The vector spaces 
are called the stalks of the diagram and the homomorphisms are called the 
structure maps. If the underlying pattern of a diagram D is a poset P, we say 
D is a diagram on P. The stalk at x E P will be written D, , and the support of 
D is {x E P 1 D, # O}. For x < y, the structure map goes from D, to D, . 
The structure maps will only occasionally be mentioned explicitly. 

Two special kinds of diagram will be most frequently employed. The 
skyscraper diagram K[x] over x E P is the diagram having one nonzero stalk, 
K[x]~ g K. The constant diagram a[Q] on Q _C P is the diagram such that 

B[Q]p: cs K if XEQ 

-0 = if ~$8, 

and such that the structure maps are the identity on K if that is possible and 
the zero homomorphism otherwise. We will only use R[Q] for Q either an 
order-ideal, an order-filter or an intersection of such. Note that K[x] = I?[{x}] 
is a special kind of constant diagram. 

Now in algebraic topology, one associates a sequence of vector spaces 
iY(X, K), for i 2 0, to any simplicial complex X. These are called the 
cohomology groups of X (with coefficients in K). The reduced cohomology groups 
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of X, written ZIi(X, K), coincide with the Hi(X, K) for i > 0. When X is 
nonempty, I?O(X, K) h as rmension (over K) one less than HO(X, K); while d’ 
$?J(m,K)=Oand&l(~,K)rK. 

In a similar way, one can associate a sequence of vector spaces Hi(D) = 
H”(P, D), for i > 0, to any diagram D on P. For the definition and properties 
see [l, 31 and references contained in these papers. The usual cohomology and 
reduced cohomology groups of d(P) are a special case of the cohomology groups 
of diagrams on P. 

PROPOSITION 2.1. For any$nite poset P and i > 0, we have 

Hi(P, k?[P]) E Hi@(P), K), 

and 
Hi(P’, K[l]) E *-l@(P), K). 

Moreover, if Q C P is an order-ideal, then 

Hi@‘, a[Ql) s H’@(Q), K). 

Proof. These are well-known facts, but there are proofs more or less from 
scratch given in [l], where the results above are Theorem 2.1, Lemma 3.1 
and Lemma 1.1 respectively. 1 

The simplest poset with respect to cohomology is a one-element poset. For 
such a poset the reduced cohomology is zero identically. If P has a top or bottom 
element, then d(P) has the same cohomology as a point. In general if d(P) 
has the cohomology of a point, we say P is acyclic. 

Next more complicated after acyclic posets are posets such that d(P) has 
nonzero reduced cohomology in exactly one dimension. We say that P is a 
d-bouquet in cohomology if @(P, K) = 0 for i # d. The terminology stems 
from the fact that if a simplicial complex A triangulates a set of d-dimensional 
spheres, all joined together at one point, then d has reduced cohomology only 
in dimension d. Note that the empty set is the unique example of a (-I)- 
bouquet in cohomology. 

Now it is obvious by definition that R4(d(P), K) = 0 for i > Z(P). Thus 
Z(P) is the highest dimension possible for d(P) to have nontrivial reduced 
cohomology. We will say that P is a bouquet if it has nonzero cohomology 
at most in the highest possible dimension. In other words, P is a bouquet if and 
only if P is an Z(P)-bouquet in cohomology. We add that by the Universal 
Coefficient Theorem, it does not matter whether we use homology or cohomology 
in this definition. In terms of diagrams, P is a bouquet if and only if 
H4(Pi, K[j]) = 0 for i # Y(P). 
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Finally, we will write Q(P) for the ith reduced Betti number, dim, @(d(P),.K). 
The reduced Euler characteristic of P is a(P) = Ci$ (-l>i hi(P). This number is 
also computable by counting chains of P; namely, 1 + g(P) = Cl:’ (- 1 )i a,(P), 
where o,.(P) is the number of chains of P of length i. By Phillip Hall’s Theorem, 
as observed by Rota in [28, Corollary 2 of Theorem 31, f(P) coincides with p(P). 

The Filtration Spectral Sequence 

One of the most useful tools in our theory is the fact that, roughly speaking, 
we can compute the ith cohomology of any diagram on a Cohen-Macaulay 
poset by looking only at the elements of ranks i, i + 1 and i + 2. This is 
analogous to the idea in topology that the ith cohomology of a polyhedron 
depends only on its i + 1 skeleton. In the proposition below we write V@, 
when V is a vector space, for the direct sum of n copies of V. 

PROPOSITION 2.2. Let D be a diagram on a ranked poset P of length 1. Suppose 
that for every x E P, the open interval (0, x) is a bouquet. Then there is a complex 

o-+co-+c1-+~~~--+c~-+o, 

whose cohomology is H*(P, D) and whose terms are given by 

Ci = @ (D5)@lp(z)I, 
+hz)=i+l 

Moreover, the homomorphism C’” -+ C t+l depends only on the structure maps 
D, + D, for all x < y such that r(x) = i + 1 and r(y) = i + 2. 

Proof. This follows from [l, Corollary 4.31. Although the result there was 
stated only for geometric lattices, the proof clearly generalizes to our case. 1 

The Leray Spectral Sequence 

Although spectral sequences can be a formidable machine in the general case, 
we will need only a small part of this particular one. For an introduction to 
the Leray spectral sequence from a combinatorial point of view, see [3]. 

The idea of the Leray spectral sequence is that iffy P -+ Q is a map of posets 
which preserves the order of P, i.e. x < y in P implies f(x) < f(y) in Q, and 
if D is a diagram on P, then the cohomology of D may be computed by means 
of information on Q. For such a map we define the fiber off over y E Q to be 
the following order-filter of P: 

f/Y =@EPIf(x) zr>* 

For a diagram D on P, the qth direct image diagram of D with respect to f, 
denoted Rqf,D, is the diagram on Q whose stalk at y E Q is 

W-J’), = H”(f/y, D), 
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where Hq(f/y, D) is the qth cohomology of the restriction of D to the fiber f/y. 
The structure maps of R’lf,D are induced by the inclusions f/y Lf/y’ 
whenever y 3~‘. The corresponding structure map is a map (Rnf,D),s = 

H”(f/y’> D) -+ H*(f/y, D) = (RY*D), 9 which, since H*(P, D) may be regarded 
as being a set of functions of a certain kind, is simply a restriction of functions. 

The Leray spectral sequence says that H”(P, D) is a subspace of a quotient 
space of the direct sum 

0 Hp(Q, pf,D). 
Pw=n 

Moreover, uncer certain circumstances it will be isomorphic to this direct 
sum. For a more detailed description of spectral sequences we refer the 
reader to Cartan-Eilenberg [12]. For the special case of the Leray spectral 
sequence above see also 131. 

3. ELEMENTARY PROPERTIES 

We are now finally ready for the definition of a Cohen-Macaulay poset. 

DEFINITION. A finite poset P is said to be Cohen-Macaulay, abbreviated 
CM, if for every x < y in p, the open interval (x, y) is a bouquet. 

We first make the trivial observation that P is CM if and only if P is CM. 
A less trivial observation is that CM posets are ranked. 

PROPOSITION 3.1. If P is CM then P is ranked. 

Proof. There are three possibilities for an interval (x, y) of Ii. 

Care 0. r(x, y) = 0. In this case we say y covers x. 

Case 1. r(x, y) = 1. In this case (x, y) is an antichain or totally unordered 
subset of P. Such a poset is always a bouquet. 

Case 2. r(x, y) > 1. As the rank increases, the condition on (x, y) gets 
more and more subtle. But one fact is clear: if Y(X, y) > 1, then (x, y) must be 
connected. This follows from the fact that I?O(o(d(x, y), K) = 0 when I(x, y) > 0 
in a CM poset. 

We now show that the properties mentioned above imply that P is ranked. 
We do this by induction. We may assume that r(P) > 1 and that the result 
holds for CM posets Q such that r(Q) < Y(P). Let A Z P be the set of maximal 
elements of P. We partition A into subsets B, C by 

B = (x E A j ~(0, x) = Y(P) - l} 
C = (x E A 1 ~(6, x) < r(P) - 1). 

By definition of Y(P), we must have B # 0. 
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Suppose that C # 0 also. Now if it were the case that Jp(B) n J,,(C) were 
empty, then P would be disconnected. This cannot be the case since Z(P) > 0. 

Therefore we may choose an element y  E J(B) n J(C). Let b E B, c E C be 
chosen so that y  < b and y  < c. Choose maximal chains from y  to b and from 
y  to c. Concatenating these with a maximal chain from 0 toy in P; gives maximal 
chains from 6 to b and from 6 to c in PG. By the inductive hypothesis, (y, 1) 
is ranked, because it is CM and has smaller rank than P. Therefore the two 

maximal chains just constructed have the same rank. However, by the inductive 
hypothesis both (6, b) and (6, ) c are ranked so we have just shown that they 
have the same rank. But this contradicts the definitions of B and C. This contra- 
diction implies that C = @ and hence, by induction, that P is ranked. 1 

Now a common technique of ours for showing that a given poset is CM will 
be to proceed inductively: the inductive hypothesis implying that all open 

intervals of P are bouquets except possibly for P = (6,T). As a result to show 
that P is CM, we must only prove that P is a bouquet. 

DEFINITION. A finite poset P is said to be almost Cohen-Macaulay, abbre- 
viated ACM, if every open interval (x, y) of P is a bouquet, except possibly for 

(XT Y) = (0, 1). 

Many of our theorems have ACM versions, and we will endeavor to point 
these out when possible. Here is an example. 

COROLLARY 3.2. If P is ACM and connected, then P is ranked. 

Proof. As pointed out in the proof of Proposition 3.1, we only used the 
fact that every open interval (x, y) of p is either an antichain or connected. 1 

Order Complexes 

We extend the definition of CM poset and of ACM poset to simplicial com- 
plexes in the obvious way: a simplicial complex d is CM or ACM if and only 
if it is CM or ACM, respectively, when regarded as being a poset. Unfortunately 
this definition causes a dilemma: if we regard a CM poset P as being a simplicial 
complex via d(P), will it still be CM ? Fortunately, it still is. 

PROPOSITION 3.3. Let P be a poset. Then P is CM if and only if d(P) is CM, 

and similarly for ACM. 

Proof. Since every open interval 2, y) of P has the property that d(x, y) 

is isomorphic to an open interval of d(P), we see that d(P) being CM or ACM 

implies that P is also. The converse is a bit harder. The open intervals of A!P) 
are of two kinds: 

Type 1. (a, T), 7 # 1. In this case [a, ~-1 is a Boolean algebra, so (u, T) is 
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isomorphic to the boundary of the standard simplex. Therefore it is trivially 
a bouquet. 

Type 2. (a, 1). If 0 is the chain x1 < x2 < ..* <x, , then (o, 1) = 
A(6, x1) * A(x, ) x2) * ... * A(xn , I), where “*” denotes the join of complexes. 
Let 6*(d) denote the reduced cochain complex of A (with coefficients in K). 
Then it is easy to verify that Z‘*-+l(& xi) * ... * A(x, , I)) is naturally iso- 
morphic to c*(A(6, xi)) @ ..* @ c*(A(xn , I)). By the (homological) Kiinneth 
formula, we conclude that A*-n((u, I), K) g 8*(A(& x1), K) @ ... @ 
fl*(A(x, , f), K). Therefore if A(6, xi),..., A(xn , 1) are all bouquets, then so is 
(0, 1). 

It then follows immediately that P being CM or ACM implies that A(P) is 
also. 1 

Topological Invariance 

Now if A is a simplicial complex, then since A is also a poset, we may define 
A(A). The resulting simplicial complex corresponds to the barycentric sub- 
division of A. Thus Proposition 3.3 tells us that being CM is invariant under 
barycentric subdivision. Even more is true: CM is a topological invariant. In 
the following, recall that if Y is a subspace of the topological space X, then 
H”(X, Y; K) d eno es t the relative cohomology of X with respect to Y with 
coefficients in K. 

PROPOSITION 3.4 (Munkres [24]). A ji nz e simplicial complex A is ACM if t 
and only if I?(\ A 1, [ A j - p; K) = 0 for every point p E 1 A 1 and every 
i#dim~A~;moreover,AisCMifandonlyifitisACMand8~(~A~,K)=O 
fori#dim]Al. 

Proof. Suppose that A is ACM. Let p be in 1 A I. By passing to the bary- 
centric subdivison if necessary, using Proposition 3.2, we may assume that p is 
a vertex of A. By the excision axiom, H”(I A 1, ] A I - p; K) z Hi(star,(p), 
star,(p) - p; K), where star,(p) is the subcomplex {u E A j a u {p} E A}. 
Now star,(p) is acyclic so by the long exact sequence in reduced coho- 
mology of the pair (starA( star,(p) - p), H’(star,(p), star,(p) - p; K) z 
@‘(star,(p) - p, K). Finally 1 star,(p) - p I is homotopy equivalent to 
I link,(p)\. Since @(link,(p), K) = 0 for i # dim 1 A I - 1, we conclude that 
Hi(l A I, / A I - p; K) = 0 for i # dim I A I. 

Conversely, suppose that the condition on 1 A I holds. We immediately get 
that A and linkA are bouquets for any vertex v by the same reasoning as 
above. We also have these properties for the barycentric subdivision A(A). 
Now link,td)(u) = A@, u) * A(u, I), w h ere the intervals are computed in 6. 
Since (6, u) is the poset of all proper subsets of u, the join A(6, u) * A(u, 1) is, 
by definition, the dth suspension of A(u, 1) where d = dim I u I. Thus 
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@(d(o, I), K)r fl~+d(linkd(d)(0), K) = 0, for i + d # dim 1 d 1 - 1. Since 
l(o, 1) = dim 1 d 1 - d - 1, we conclude that (a, 1) is a bouquet. It follows 
that d is ACM. The theorem is now immediate. a 

We might add parenthetically, that Quillen has a notion of a CM poset that 
superficially resembles our concept. Some of our theory generalizes to his case; 
for example, there is a version of Theorem 5.2 that holds in his theory. However, 
not all the theorems generalize. Munkres’ Theorem above is an example of 
one that does not: Quillen’s concept is not a topological invariant. For details 
see [25]. 

Miibius Functions 

One of the most interesting combinatorial features of CM posets is the fact 
that the values of the Mobius function have a direct interpretation as the 
dimensions of certain homology groups. In fact, in Theorem 5.6 we essentially 
show that this property characterizes CM posets. Recall that p(P) is the reduced 
Euler characteristic g(P). Now if P is a bouquet, then p(P) = g(d) = 
(-1)z’P) t&.)(P). Thus for a CM poset we have the following 

PROPOSITION 3.5. Let P be a CM @et. Then for x < y in p, 

dX>Y) = C-1) z(“*y) ~Z(r,&, YIP 

in particular, (- l)r(z~u) ~(x, y) > 0. 

Field Characteristic 

Since there is a seemingly different concept of CM poset for every choice 
of a field K, it is natural to wonder how these different concepts are related to 
one another. By the Universal Coefficient Theorem and the fact that being a 
CM poset is determined by the aanishing of cohomology groups, it follows 
that replacing K by an extension field or by a subfield does not affect the CM 
property. Thus being CM depends only on the characteristic of K. 

By another routine application of the Universal Coefficient Theorem, one 
can see that if P is CM over some field, then it is CM over Q, the field of rational 
numbers. Moreover, if it is CM over Q, then it is CM for all but finitely many 
characteristics. 

Now one could define the concept of a CM poset over any ring R. Even more 
general notions are possible by making use of some kind of “structure diagram” 
other than the constant diagram R for computing cohomology. However, we 
need only one other case: CM over Z, the ring of integers. By the Universal 
Coefficient Theorem once more, one can show that P is CM over Z if and only 
if it is CM over ewery field. 
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Beyond the relationships mentioned above, there are no others among the 
CM conditions for the various characteristics. We summarize the above com- 
ments in this diagram of implications: 

P 
CM over Zj2Z 

b 

fl 
CM over Z/32 

\ 
CM over Z * CM over Z/SZ =+ CM over Q. 

CM over Z o for every prime p, CM over .@z 

CM over Q o for all but finitely many primes p, CM over Z/pZ 

4. THE COHEN-MACAULAY PROPERTY 

In this section we discuss how the CM property is related to other combina- 
torial properties of posets. The oldest result relating the CM property to another 
poset property is Folkman’s Theorem [16, Theorem 4.11 which in current 
terminology says that a geometric lattice is CM (over Z). His work easily 
generalizes, and for this reason Proposition 4.1 is essentially due to him. 

One of the ways to prove that a poset is a bouquet is to use the Mayer- 
Vietoris sequence. This technique applies in particular to the class of shellable 
posets. 

DEFINITION. A simplical complex d is said to be shellable if 

(1) d is pure of dimension d. 

(2) The maximal simplices of d can be listed in some order FI , F, ,..., F, 
in such a way that the subcomplexes F, n (Ul”=;’ Fd) are pure of dimension 
d-lforalln>l. 

A poset P is said to be shellable if A(P) is a shellable complex. Any total 
ordering on the maximal simplices of A satisfying condition (2) above is called 
a shelling of A. 

PROPOSITION 4.1 (Folkman). A sheZZubZe complex is CM. 

We now discuss another direction in which Folkman’s work leads quite 
naturally. First we recall some more notation from the theory of partially 
ordered sets. Let P be a poset. A chain x0 < *a* < xI of P is said to be saturated 
if it is a maximal chain of [x0 , xl]. Let Cov(P) be the subset of A(P) of saturated 
chains of length 1. Such chains are called covt~iq relations. We say y covers x 

if (x < y) E Cov(P). These are the edges of the graph one usually draws when 
depicting a poset. This graph is called the Hasse diagram of P. An (upper) 



COHEN-MACAULAY ORDERED SETS 237 

semi-modular lattice L is a lattice for which if x, y both cover z in L, then x v y 
covers both x and y. A finite lattice L is geometric if it is semimodular and every 
element is a supremum of elements covering the minimum element of L. 

The notion of a semimodular lattice generalizes to posets. A poset P is (upper) 
semimodular if whenever x and y cover z in P, then there exists an element w 
in P which covers both x and y (Birkhoff [8, p. 391). Now semimodularity does 
not imply CM, as this example shows: 

This poset is not CM because (a, b) is not a bouquet, but it is easy to see that 
the poset is semimodular. 

The problem is that semimodularity is not a local property. We define a 
property B of a poset P to be local if B is satisfied for every closed interval 
[x, y] of P. Now CM is a local property (of P) as is semimodularity for lattices. 
For this reason we expect that local semimodularity for posets is the proper 
generalization of semimodularity for lattices. In the next proposition we see 
that this is correct. The earliest version of this result was found by Folkman [ 161, 
who showed that geometric lattices are CM over Z. Later Baclawski [2] and 
Farmer [15] independently proved that if p is locally semimodular then P is 
CM over Z. Finally Bjiirner [lo, Theorem 6.11 established that in this case P 
is actually shellable. We now present a new proof of his result. 

PROPOSITION 4.2. A locally semimodular poset p is shellable and hence CM. 

Proof. Let p be locally semimodular. We first remark that P must be ranked. 
To see this let (x, y) be an open interval of p such that (x, y) is not an antichain. 
Let z E (x, y) be a minimal element that is not covered by y. By semimodularity, 
z is connected to every other minimal element of P. Therefore (x, y) is connected. 
Now apply the same proof as in Proposition 3.1. 

Choose an ordering x1 ,..., x, for the minimal elements of P. We will show 
that we can find a shelling of P of the form FI ,..., F,, , FS1+, ,..., Fal ,..., F,% such 
that FI ,..., FSi is a shelling of V({x, ,..., xi}) for all i. We assume inductively 
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that this is possible for all locally semimodular posets & having fewer elements 
than p. Since p({((x, ,..., ~+r}) is such a poset, we need only show that a shelling 
on V({x, ,..., x+r}) extends to one on P. 

The elements which cover x, are of two types: either they are in 
V({Xl >..*, x,-,}) or they are not. Let y1 ,..., yk be the ones of the first type, and 

let Yk+l ,..., ym be the ones of the second type. Now p({yr ,...,ym}) is a locally 
semimodular poset. By the inductive hypothesis we can find a shelling of it 
that extends one on p({y r ,..., yk)). Clearly this shelling induces an extension 
of any shelling on P({x, ,..., x,-r}) to one on p. 

It remains only to consider the case n = 1. Now in this case if we let 
Q = P\\{xl}, then & is a locally semimodular poset having fewer elements 
than p. By induction it is shellable, and such a shelling induces one on P. a 

In the special case of a geometric lattice, the result above can be stated as 
follows. Let P be a geometric lattice. Let A = {a, ,..., a,} be the set of atoms 
of P. For every maximal chain x1 < x, < ... < x, of P, define its label to be 
the sequence (b, ,..., b,) of atoms of P given by: bi is the atom uk such that k 
is the least integer for which xi-r v ak = xi (by convention x,, = 6 and xn+r = 1). 
Then if we order the maximal chains of P lexicographically by their labels, 
we get a shelling of P. This was first observed by Bjijrner [lo]. This observation 
has the following application. 

THEOREM 4.3. If p is a geometric lattice and ifp E P, then P\{p} is shellable 
and hence CM. 

Proof. We first note that if x1 < -.. < x, is maximal in P’ = P\(p) then 
it is also maximal in P. If it were not then we could extend it to a maximal 
chain in P which means that for some j, 6 = x,, < .a- < xi-r < p < xi < ..* < 
X n+1= ‘i is a maximal chain of P. Now the interval (xisl , x$) cannot contain 
only p since p is geometric. This contradicts the maximality of x1 < a.. < x, 
in P. 

Now choose an ordering {ur ,.. ., a,} of the set of atoms A of $’ in such a way 
that for some K, the set of atoms below p consists of {al, ,..., u,J. In other words, 
choose the ordering of the atoms of A in such a way that the atoms below p 
are the last ones. We now show that with this ordering on A, the lexicographic 
ordering on the maximal chains of P’ defines a shelling. 

Let x1 < ... <x, be a maximal chain of P’. Let {x,<...<<~<...< 
x, 1 j E J} be the set of maximal intersections of x1 < ..* < x, with earlier 
maximal chains of P. Let yj be chosen, for each j E J, so that x1 < ... < xi-r < 

Yj G %+1 < *-. < x, is a maximal chain of P which precedes xr < ... < x, . 
Now if none of the yi’s is equal to p, then we are done since the simplicial 
complex of chains contained in intersections of x1 < .** < X, with preceding 
maximal chains of P’ must in general be smaller than the complex obtained by 
using P instead of P’. 
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Therefore we may assume that for some J’ E J we have yi = p. Let (b, ,..., b,) 
be the label of x1 < *** < X, , and let (b, b,- ,..., 3 1 , ci ,..., c,) be the label of 
x1 d “’ < Xj-1 <yj < Xjfl < ‘** < X* . Now the latter maximal chain pre- 
cedes the former lexicographically. So if bj = uk and cj = a, , then I < K. Now 
by definition of the label, xj = Xj-r v bi and p = yi = xi-1 v cj . Therefore 
a, = bj <p and a, = cj < p. By the choice of the order of the atoms of p, 
this tells us that 1 > K. Contradiction! The result then follows. l 

Thus geometric lattices are “very” Cohen-Macaulay in the above sense. 
One consequence of Theorem 4.3 is that the canonical module of a certain ring 
associated to any poset P will have rank 1 p(P)/ when P is a geometric lattice. 
We refer the reader to [5] for definitions and details. 

Let P be a poset. A link of P is a saturated chain of length 2. Write Link (P) 
for the set of links of P. Let 2 C Link (I,) be a set of links of P. We say that 
a saturated chain C = {x,, < ..* < xl} is linked by 69 if Link (C) _C 2. A ranked 
poset p is said to be linkable if there is a set 64 of links of p, called a linking 
of p, such that for every pair x < y of elements of P there is a unique maximal 
chain in [x, y] that is linked by Y. This concept is due to Gessel [18]. 

A pure simplicial complex, d of dimension n - 1 is said to be a virtual ER 
(or VER) complex if there is a mapping 4: dc + Max(d) x B([n]), where 
Max(d) is the set of maximal simplices of d and B([n]) is the Boolean algebra 
of subsets of [n], such that: 

(1) + is injective, 

(2) for u E dg , if d(u) = (T, S), then 1 S 1 = dim(u) + 1, 

(3) for 7 E Ma-44 {S I (T, S) E WdG> consists of all subsets of [a] con- 
taining some fixed subset S(T). 

(4) for u E d, if 6(u) = (T, S), then u C 7. 

Finally we say A is an ER complex (or a partition&e complex) if Ah is a disjoint 
union of intervals of the form [a, T], where T E Max(d). A poset P is VER or 
ER if and only if A(P) satisfies the corresponding condition. The concepts above 
are due to Garsia [17]. 

The following gives the known relations among the poset conditions defined 
above. 

PROPOSITION 4.4. For a poset P, the following implications hold: 

Locally semimodular * Shellable * CM over Z * CM over Q 

linkable >ER 5 VER 
d 

Proof. The following are the nontrivial implications. 
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Locally semimodular > Shellable: Bjorner [IO] 

Shellable + CM over Z: Proposition 4.1 

CM over Q * VER: Garsia [17] 

Shellable > ER. This is easy. Let 7r ,..., 7, be a shelling of d(P). Then for 
every K, Q n (Ufit TJ is the union of all subsets of Q which do not meet some 
fixed simplex uk C Q . Therefore d(P) is the disjoint union of the intervals 

[%,?cl* I 
Most of the reverse implications in Proposition 4.4 do not hold and counter- 

examples are easy to find. However, the precise relationship among linkability, 
ER and VER is still unknown. The following examples show that linkability 
does not imply CM even for ACM posets of low ranks. 

EXAMPLE 4.5. 

d f 

c h d i 

a C 

(a) (b) (4 

The following are linkings of these posets. 

(a) 2 = ((6, a, 4, (6, b, e), (6, c, f), (h 4 I>, (a, e, f), (c,f, I>> 

(b) 9 = ((6, a, 4, (6, a, d), (6, a, f), (6 a,& (6 a, 4, (6 b, 4, 

(a, c, 4, (a, c, I), (a, g, 4, (a, 4 m), (6 4 4, (6 4 I), 

(6 g, 4, (h 4 m), (c, A, I), (4 1% I), (e, m, 11, (f, 12, I), 

(g, m, 0, (4 n, Q) 

(c) 9 = ((6, a, 4, (6, h 4, (6, c, f), (6, c, g), (6, c, h), (6, c, i), 

(a, 4 4, (b, e, 4, (a,.f, 4, (CL ml, (a, 8, n), Cc, g, n), 
(h h, 4, (c, h, A), (h i, I), (a, i, m), (c, 6 I>, (c, i, 4, 

(4 4 I), (g, I, 11, (e, m, 11, (5 m, 11, (6 m, 11, (4 71, TN. 

It is easy to verify that all three posets above are ACM (when 0 and i‘ are 
removed, of course). The first two posets are not even CM over Q. The third 
poset is CM over Q but not over Z. f 

On the other hand, linkability is implied by CM in length 1. This follows 
from the following characterization of linkability in this case. 
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PROPOSITION 4.6. Let P be a jinite ranked poset of length 1. Then p is linkable 
if and only if the Hasse diagram of P has at most one connected component that is 
acyclic. 

Proof. The links of P all have either the form (0, X, y} or (x, y, ‘i>. We 
interpret these as directed edges (y, X) and (x, y) of the Hasse diagram G of P. 
Then a set L of directed edges of G is a linking of P provided: 

(a) every vertex occurs exactly once as a source, 

(b) there is exactly one edge directed both ways in L. 

From the Hasse diagram of P we construct a bipartite graph H as follows. 
The vertices of H are in two classes HI and H, . The elements of HI are the 
elements of P, i.e. the vertices of G. The elements of H, are the edges of G 
together with an extra vertex b. The edges of H are given as follows. If w E H, 
is an edge of G, we join w to its two endpoints in HI . If w = 6 E H, , we join w 
to every element of HI . 

We show that a matching fi HI + Hz of H gives rise to a linking 9 of P 
aa follows. 

Case 1. b Ef (HI). Th en there is a unique vertex v,, E HI such that 
f (w,,) = b. For all o E H,\{w,}, we direct the edge f(w) so that w is the source. 
Then every vertex except w,, is the source of a unique directed edge off (H,\{w,)), 
and no edge is directed both ways, because f is a matching. 

Case la. Suppose that ws is the sink of one of the directed edges above. 
We choose one and direct it also in the other direction. This directed edge 
along with the edges directed above then form the desired class 9 of links of p. 

Case lb. Suppose that w,, is not the sink of one of the directed edges above. 
Since P has length 1, w,, is joined to at least one other vertex w, in G. This 
vertex is the unique source of the directed edge f (or). If we redefine f so that 

e e dg i e w,, , wi} of G, then f is still a matching, but we are now in 

Case 2. b $ f (HI). Let a, E HI be any element. Redefine f so that f  (woo) = b. 
Then f is still a matching, but we are now in Case 1. 

Thus we must show that a matching f: HI + H, exists. For this we use the 
“marriage theorem” of Philip Hall. Let S _C HI. We wish to show that if S’ 
is the set of elements of H, joined to S, then 1 S’ 1 2 1 S I. Accordingly, let 
s, , s, ,**-, S, be the components of the subgraph generated by S in G. In a 
given component Si , there must be at least 1 Sj 1 - 1 edges for it to be 
connected. 
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Casel. n= 1. S’ consists of at least 1 S 1 elements because S’ contains b 
as well as at least 1 S j - 1 edges by nature of the fact that S is connected in G. 

Case2. 71 > 1. Let 5’: be the set of all edges joined to some vertex of Si , 
so that S’ = {b} u ((Ji Si). Now if 1 S; / = 1 St j - I, then Si forms a connected 
acyclic component of G. By assumption this can happen only once. Thus 
1 S’ I = 1 + xi [ S: [ > xi / Si / = 1 S I, because 1 S; I > I Si I for all but 
possibly one Si . 

Therefore by the marriage theorem a matching f: HI + H, exists and P is 
linkable. 

Conversely if P is linkable, then a linking set 9 defines a matchingf: Hl + H, 
such that f (0s) = b, where ~1s is one of the vertices of the edge directed both 
ways by 9’. Now if two components S, , S, of G are acyclic then, using the 
notation of Case 2 above S = S, u S, has the property that 1 S’ / = 
l+~S~~+~S~~=l+~S,~-l++SS,~-l=~S~-l.Thiscontradicts 
the existence of the matching f. Thus at most one component of G is a tree. 1 

COROLLARY 4.7. If P has length 1 and is CM, then p is linkable. 

Although we have little evidence to support it, the examples and results above 
suggest that CM implies linkable. 

5. FIBRATIONS 

The fibration theorem is a consequence of the Leray spectral sequence. It 
originally arose in an attempt to find homological analogs of Rota’s theorem 
on the Miibius functions of posets joined by a Galois connection [27, Theorem 1] 
and of the Crapo complementation theorem [13, Theorem 11. For a detailed 
treatment of these results see [3]. The success of these ideas prompted us to 
examine other contexts in which Galois connections appear naturally. One 
such context is the theory of fixed points in partially ordered sets as developed 
in [6]. 

Geometrically speaking, if one is given an order-preserving map F: P + Q, 
one may regard the poset P as having been “constructed” from the fibers F/y 
for y E Q, the “plan” for the construction being Q. One calls Q the base and P 
the total poset of the fibration F. The geometric point of view is particularly 
intuitive when Q is a lattice for in this case (F/y) n (F/y’) = F/(y v y’) for 
y, y’ E Q. Thus one may think of P as being formed from the disjoint union 
of the fibers F/y for y minimal in Q, modulo identifications of the subfibers 
F/( y v y’) for y, y’ minimal in Q. 

Let us begin with a simple example. Roughly speaking, this proposition says 
that fibrations preserve acyclicity in all cases. 
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PROPOSITION 5.1. LetF: P -+ Q be an order-preserving map of posets. Assume 
that: 

(1) Q is acyclic, 

(2) for ewery y E Q, F/y is acyclic. 

Then P is acyclic. 

Proof. This result is essentially well-known to topologists, but we give a 
proof in detail to illustrate the technique. We will be less detailed later. Extend 
F to an order-preserving may i? PI-+ Q’ by defining @(I) to be T. We compute 
H*(Pf, K[l]) by using the Leray spectral sequence: 

W(Qf, R”&K[~]) a H”(P$ Kp]). 

We first compute the stalks of the diagrams Rqfl.&[l]. Let y be in Q’. Then 

(R”P*K[T]), = W(E/y, Kfl]) 

E Z?q-l(F/y, K). 

By assumption (2), this vanishes for all y E Q. Thus the only nonzero stalk is 
over 1, and this occurs only for Q = 0. Therefore Rq~*Z@] = 0 for Q > 0 and 
P.E’*K[I] = K[T]. w e now apply assumption (1) to compute 

fP(Q’, R”&K[T]) g @-l(Q, K) = 0, 

for all p. Thus by the Leray spectral sequence, H”(P’, K[?]) z Z?+l(P, K) = 0 
for all n. The result therefore follows. l 

We now come to the main result of this section. This says that if the fibers 
have the correct ranks then fibrations preserve the CM property. 

FIBRATION THEOREM 5.2. LetF:P --+ Q be an order-preserving map of finite 
ranked posets. Assume that: 

(1) W b T(Q), 
(2) Q is ACM, 

(3) for every y E Q, F/y is CM, 

(4) for every y E Q, Y(P) - r(F/y) = r(y) - 1. 

Then P is ACM. 
Furthermore P is CM if and only if one of the following conditions holds 

(a) r(P) = Y(Q) and Q is CM, OT 

(b) Q is acyclic. 

Proof. We remark that if condition (3) holds then conditions (1) and (4) 
are together equivalent to assuming that for every y E Q, F/y is nonempty and 
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its minimal elements all have rank r(y). As a result, conditions (l)-(4) imply 
that F is rank-decreasing: if x is in P then T(X) > r(F(x)), because x is in F/F(x) 
and the rank of any minimal element of F/F(x) is r(F(x)). 

Let x be in P. Then we have x E F/F(x) as just noted so (x, 1) is an open 
A 

interval of F/F(x). By condition (3), (x, f) is CM. We next show that (6, X) is 
CM also. This is a bit more difficult and requires that we apply the theorem 
inductively. 

More precisely, let P’ be (6, X) and define Q’ to be (0, F(x)) if F(x) $F(P’) 
and to be (6, F(x)] otherwise. Let G: P’ --+ Q’ be the restriction of F. We show 
that conditions (l)-(4) and one of (a) or (b) hold for G. 

The fact that F is rank-decreasing implies that r(P’) = T(X) - 1 > 
r(F(x)) - 1 = r(Q’) provided that F(x) $F(P’). On the other hand, if 
F(x) EF(P’), say F(x) = F(d) w h ere x’ E P’, then r(P’) > y(d) > r(F(x’)) = 
r(F(x)) = r(Q’). Thus condition (1) holds for G. 

That condition (2) holds for G is trivial. We therefore consider condition (3). 
Let y be in Q’. Then we have y <F(x) so that x is in K/y. It follows that G/y 

coincides with the open interval (6, X) as computed in F/y. Since F/y is CM by 
condition (3), we conclude that G/y is CM also. Hence G satisfies condition (3). 

Since the rank of an element in P’ or in Q’ coincides with the corresponding 
rank in P or Q and since a minimal element of G/y is automatically minimal 
in F/y, we see that G also satisfies condition (4). This leaves conditions (a) 
and (b). If Q’ = (6, F(x)], then G satisfies (b). We may therefore assume that 
F(X) $F(P’). It follows that x is a minimal element of F/F(x). By condition (4) 
for F, Y(X) = r(F(x)). Hence r(P’) = r(Q’). By condition (2), Q’ is CM,so G 
satisfies condition (a). Hence G necessarily satisfies one of (a) or (b). 

Therefore, by induction on the size of P, we conclude that (6, X) is CM. 
Combining this with our earlier result, we find that P is ACM. 

It remains to consider when P can be CM. We proceed as in Proposition 6.1. 
Let y be in Q’. By conditions (2) and (3) (Rg$‘*K[f]), = @(p/y, K[T]) = 0 
for all Q except possibly for p = 0 or 4 = r(F/y) = r(P) - r(y) + 1. 
(Fp*K[T]), is nonzero only when F/y is empty. This occurs only for y = ‘i 
so R@+K[~] = K[fj on Q 2. Similarly, for q > 0 @p&n] is supported on 
elements such that q = r(P) - r(y) + 1, i.e. on elements of rank Y(P) - q + 1. 
Therefore Hp(Q)l*, Rgfl,K[~]) = 0 except possibly when p = r(P) - q or when 
q = 0. 

The Leray spectral sequence then implies that W(Pi, K[*i]) E H”(Qi, &I]) 
for n < Y(P), since the only terms H”(Qi, R@&$]) which are nonzero and 
have n = p + q < Y(P) are those for which q = 0, and we know in this case 
that R”fl*K[ci] = K[l]. If Y(P) > r(Q) then P is CM if and only if 
H”(Qf, Kfl]) = 0 f or all it, i.e. Q is acyclic. If r(P) = Y(Q) then P is CM if 
and only if Q is also. The result therefore follows. 1 
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6. RANK SELECTION 

One of the most important properties of CM posets is the fact that they are 
preserved under rank selection: any subposet of a CM poset, obtained by 
deleting all elements from certain ranks, is also CM. The power of this fact is 
illustrated by Theorem 6.6, which characterizes CM posets in terms of this 
property combined with the one in Proposition 3.5. 

DEFINITION. Let P be a ranked poset of rank n. Let S _C [n] be a set of 
ranks of P. The rank-selected subposet with respect to S is defined by 

Ps = {x E P 1 T(X) E S}. 

The key to the rank selection theorem is the following immediate consequence 
of the filtration spectral sequence (Proposition 2.2). 

RANK SELECTION LEMMA 6.1. Let P be an ACM poset and D a diagram 
on P. If D is supported on P, then H*-l(P, D) is also supported on S, i.e. if D, = 0 
for every x such that r(x) $ S, then Hi-l(P, 13) = 0 for i $ S. 

We begin with a theorem which gives a relatively general prescription for 
extracting ACM posets from others. The key to this process is a condition on 
the “distance” between elements of the ambient poset and the subposet. More 
precisely, let Q be an order-ideal of P. The distance d,(x) of x E P from Q is 
the length of the smallest chain from x to an element of Q. If  P is ranked, we 
can give a simple formula for the distance: d,(x) = r(J(x)) - r(J(x) n Q). We 
extend this function to p by defining d,(l) to be r(P) - r(Q) + 1 and do(Q) 
to be 0. 

IDJGIL BOUQUET THEOREM 6.2. Let Q be an order-ideal of a CM poset P 
such that d,: p--+ Z is order-preserving. Then Q is a bouquet. 

Proof. We first consider the special case for which P has a maximum element 

x1 . I f  x1 E Q, then we are done. If  not, we replace P by P’ = P\{xl}. It is easy 
to verify that the hypotheses of the lemma still hold for P’ and Q’ = Q since 
d,,(j) = d,(x,) and do,(x) = d,(x) f  or x E P’. Therefore we may henceforth 
assume that P does not have a maximum element. 

We next observe that if P were replaced by J(x) and Q by J(x) n Q, then 
the hypotheses of the lemma still hold. To see this simply note that d,(,),o(y) = 

U(Y)) - W(Y) n 8) = do(y) for Y E J(x) and dm,-d) = 444 + 1. Now 
J(x) is CM. Since J(x) # P by the assumption above, we may use induction 
on the number of elements of P. Therefore we may assume that J(x) n Q is a 
bouquet for every x E P. 
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We now compute H*(Q, K) by using the Leray spectral sequence. To do 
this we must dualize P and the notation of the theorem. For example, Q is 
now an order-filter of P. Let f: Qf --f Pi be the inclusion map. The Leray 
spectral sequence for the diagram K[T] on Q’ is: 

Hp(Pi, R4f,K[T]) * H”(Qi, K[I]). 

The stalk at x E Pt of R’lf,K[i‘] is given by 

H’~(f/x, K[T]) gg I?g-l(V(x) n Q, K). 

Since I’(x) n Q is a bouquet, we see that @J-l(V(x) n Q, K) = 0 for Q - 1 # 
Z( V(X) n Q) and hence that I+f,K[l] ’ 1s supported on {x E Pf 1 Y( V(x) n Q) = q}. 

We now use the condition on d, . This condition implies that for x E P, 
r(I’(x)) - r( V(X) n Q) = d,(x) < d,(6) = r(P) - r(Q) + 1. Rearranging, we 
find that r(P) - r(V(x)) > Y(Q) - Y(V(X) n Q) - 1. The left side of this 
inequality is r(x) - 1. Therefore for every x E P, 

This inequality also holds for x = 7. Therefore Raf,K[j] is supported on 

{x E Pf I +4 > r(Q) - 4). 
Since P is CM, Pf is also; hence the filtration lemma implies that 

HP(P*, Rgf*K[T]) vanishes for p < r(Q) - q. By the Leray spectral sequence, 
H”(Qf, K[T]) must also vanish for 7t < r(Q). This is precisely the condition 
that Q be a bouquet. 1 

We now give the ACM version of the Ideal Bouquet Theorem. 

THEOREM 6.3. Let Q be an order-ideal in an ACM poset P. If d,: P + Z 
is order-preserving, then H”(P, K) E H”(Q, K) for i < Z(Q) - 1. If, moreover, 
d, satisfies d,(x) < r(P) - r(Q) for all x E P, then Hi(P, K) s Hi(Q, K) for 
i < E(Q). 

Proof. We proceed as in the proof of Theorem 6.2. In particular this requires 
us to dualize P and the notation of the theorem as we did in 6.2. Now if P has 
a maximum element, then P is CM and we are done by Theorem 6.2. Similarly 
if P were replaced by J(X) and Q by J(X) n Q then since J(X) is CM we would 
again be reduced to Theorem 6.2. Therefore in the Leray spectral sequence 
computation we may again conclude that the support of Raf,K[T] is contained 
in {X E P* 1 r(x) > r(Q) - q}. 

Now the only direct image that has a nonzero stalk on T is Rof*K{l]. Since 
P is ACM, this means we may apply the filtration lemma to Raf,Kfl] when 
q > 0. Therefore Hp(P*, R’ff,K[l]) = 0 for p < r(Q) - q as before. However, 
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since Pi need not be ACM, we cannot do the same for Rsf*K[T] ; but we 
can assert by the Leray spectral sequence that 

Hn(Qf, K[T]) E Hn(PP, ROf,K[l]), for n < r(Q), 

because of what we know about Rv&[l] for q > 0. Now ROf,K[T] is easily 
seen to be the constant diagram &![fl], where U = {x E P 1 V(x) n Q = a}. 
It is easy to see that K[l] is a subdiagram of E[U*]. Therefore we have a short 
exact sequence of diagrams 

0 + K[T] -+ R[ uq --+ R[ U-J -+ 0. (*) 

We now consider the condition on d, . The fact that d,(x) < d,(6) for 
x E P tells us, as in the proof of 6.2, that r(x) 3 Y(Q) - r(V(x) n Q) and 
hence if x is in U thFn Y(X) > Y(Q). M oreover, if we assume the stronger condi- 
tion d,(x) 6 r(P) - Y(Q) holds, then Y(X) > r(Q) - r(V(x) n Q) holds and 
hence if x is in U then Y(X) > Y(Q). S ince P is ACM, we may conclude that 
H”(P, K[Uj) = 0 for all n < r(Q) - 1 in the former case and for 71 < r(Q) - 1 
in the latter. Applying this to the long exact sequence of (*), we find that 

Hn(P, I?$]) g Hn(P, R[Ui]) 

for 7t < Z(Q) or n < I(Q) as the case may be. Now the left-hand side above is 
isomorphic to A+l(P, K) and the right-hand side is isomorphic to 
H”(Q*, K[l]) E I?‘+l(Q, K) f or n < Z(Q) by our earlier computation. The 
result therefore follows. 1 

We now come to the main result. 

RANK SELECTION THEOREM 6.4. If P is CM of rank n and if S C [n] is 
any set of ranks, then Ps is also CM. 

Proof. By induction we may assume that P, is almost Cohen-Macaulay. 
Now d(P,) is an order-ideal in d(P), and we have dg(ps)(u) = 1 0 1 - ] os 1, 
where a, = (x E u 1 r(x) E S]. Thus dgtps) either remains constant or increases 
by one as we adjoin a new element to the chain G. By the Ideal Bouquet 
Theorem 6.2 we are done. 1 

With exactly the same proof one can show that any rank-selected subcomplex 
of a balanced Cohen-Macaulay complex is also Cohen-Macaulay (see Section 2 
for notation). 

As expected there is an ACM version also. 

THEOREM 6.5. If P is ACM of rank n and if S _C [n] is my set of ranks, 
then Ps is also ACM and Hi(Ps , K) E Hi(P, K) for i < Z(P,). 
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Proof. That Ps is ACM follows from Theorem 6.4. Now the maximum 
value taken by ddcp,)(a) is clearly n - [ S 1 = r(P) - r(PJ so by Theorem 6.3, 
the second part follows also. i 

We now show that the two rank selection theorems above allow us to exhibit 
a variety of useful equivalent formulations of Cohen-Macaulayness for posets. 
In the following, ,+(x, y) denotes ~((x, y)r), and in the special case S = [s] 
for some integer s, we abbreviate pFLs(x, y) to pL8(x, y) and (x, JJ)~ to (x, JJ)~ . 

THEOREM 6.6. Let P be a $nite ranked poset. The following properties of P 
are equivalent. 

(a) P is Cohen-Macaulay, 

(b) for every x <y in P and every SC [Y(x, y)], 

(--1p-l Ps(~, Y) = hsl-l((% Y)s 9 9; 

(c) for every x < y in p and s < r(x, y), 

(- 1y-l P&c Y) 3 L((% Y)B 9 K); 

(d) for every x < y  in P and s < Y(X, y), 

L&, Yh , K) = 0. 

Proof. (a) * (b) follows from Theorem 6.4 while (b) = (c) is trivial. We 

assume inductively that the theorem holds for all posets having fewer elements 
than P. Let P’ be PI~Q,)-~J , i.e., delete the top rank of P. Now if any one of (b) 
through (d) holds for P, then the same is true of P’ and of any open subinterval 
of p. Therefore we may assume that P is ACM and that P’ is CM. 

By an easy application of the filtration lemma, we have that I?(P, K) g 
l?(P’, K) for i < Z(P) - 1. Therefore A’(P, K) = 0 for i < Z(P) - 1. It is 
then immediate that (d) G= (a). It remains to show that (c) z- (d). Now p(P) 
is the reduced Euler characteristic of P. Hence 

p(P) = (-1)r’p’ f;J(p)(P, K) + (- l)“p’-l &(&,(P, K). 

It is now immediate that (c) * (d) and the result follows. 1 

7. COHEN-MACAULAY-PRESERVING OPERATIONS 

In this section we discuss some of the more traditional operations, with 
respect to the CM property. We delayed the discussion of these operations 
until now in order to make use of the techniques of Sections 5 and 6, thereby 
illustrating their use. 
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Let P and Q be posets. The order-dual, denoted P*, of P is the poset obtained 
by reversing the order of P. The product of P and Q, denoted P x Q, is the 
Cartesian product of P and Q with order given by (x, y) < (x’, y’) if and only 
if x < x’ and y < y’. The interval poset of P, denoted Int(P), is the poset of 
closed intervals of P, ordered by inclusion: [x, y] 6 [x’, y’] if and only if 
x’ < x and y < y’. In other words, Int(P) is g iven the induced order as a subset 
of P* x P. 

Now it is trivial that P is CM or ACM if and only if P* is CM or ACM; 
moreover H*(P, K) E H*(P*, K). This follows from Proposition 3.3 and the 
fact that d(P) = d(P*). W e would like to prove similar statements for P x Q 
and Int(P). 

THEOREM 7.1. Let P and Q be nonempty ACM posets. Then P x Q is also 
ACM, and P x Q is CM if and only if both P and Q are acyclic OY both are 
antichains. 

Proof. Let P and Q be ACM posets. Let (x, y) E P x Q. Then J((x, y)) = 
J(x) x J(y) and v((x, y)) = V(x) x V(y). If we assume the theorem is true 
for posets P’ and Q’ whose product P’ x Q’ has fewer elements than P x Q, 
then we may assume that P x Q is ACM except when both P and Q have a 
minimum or both have a maximum element. 

First suppose that both P and Q have minimum and maximum elements. 
Then P x Q has these also. Write R for the poset such that I? = P x Q. 
As above, we can easily see that R is ACM. 

Let P’ and Q’ be such that P,$ = P, Qi = Q. Then P’ x Q and P x Q’ 
are order-filters of Ri satisfying (P’ x Q) u (P x Q’) = RI and (P’ x Q) n 
(P x Q’) = P’ x Q’. N ow P’ x Q, P x Q’ and P’ x Q’ are all CM by the 
second part of the theorem and our inductive hypothesis. A routine application 
of the Mayer-Vietoris sequence for the diagram I@] gives that R is a bouquet. 
Thus R is CM, and so P x Q = 18 is also. 

The next case to consider is that P has a maximum, but no minimum element, 
and Q has a maximum element. Let f: P x Q --+ P be given by f (x, y) = x. 
The fibers off have the form f/x = V(X) x Q. By the case considered above, 
these are all CM. Since the other conditions of Theorem 5.2 are satisfied, we 
conclude that P x Q is CM. The two cases just considered now give that 
P x Q is ACM in all cases. 

The last statement is an easy consequence of the Eilenberg-Zilber Theorem 
[30, Theorem 5.34, the Ktinneth formula and the fact that d(P x Q) trian- 

gulates I W)I x I4Q)l. I 

THEOREM 7.2. A poset P is CM or ACM if and only if Int(P) is also. More- 
over, for an arbitrary poset P, H*(P, K) s H*(Int(P), K). 
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Proof. We begin with the second statement. Define an order-preserving 
mapf: d(P)* -+ Int(P)* by 

f(q) < ... < XJ = [xg ) XL]. 

The fibers off are given by 

f/[a, b] = {x0 < ..* < xz I h 3 %I c [a, 4 = 4[a, 4). 

Therefore, the fibers off are acyclic. By the Leray spectral sequence for f and 
the constant diagram, we have 

H*(P, K) E H*(d(P), K) G H*(Int(P), K). 

If we show that P is ACM if and only if Int(P) is so, then the corresponding 
result for CM will follow from the isomorphism above. 

Assume that P is ACM. Let [x, y] be in Int(P). Then V([x, y]) s J(x) x V(y) 
and /([x, y]) = Int([x, y]). The former is CM by Theorem 7.1; the latter is 
CM by the usual induction, except when P has both a minimum and a maximum 
element. 

Accordingly, we may suppose that P = [a, b]. Let d’(P) be the subcomplex 
of d(P) consisting of all nonmaximal chains. Since P is CM, d’(P) is also CM 
by Theorem 6.4. Restrict the map f defined above. This defines an order- 
preserving map f: d’(P)* -+ Int’(P)*, where Int’(P) = Int(P)\([a, b]}, whose 
fibers are acyclic. By the Leray spectral sequence for f and the constant diagram, 

H*@‘(P), K) g EZ*(Int’(P), K). 

Therefore Int’(P) is a bouquet. It follows that Int(P) is ACM. 
Conversely, suppose that Int(P) is ACM. Suppose that x E P, and we consider 

the open interval (a, x) of P. It need not be true that Int((6, x)) is an open 

subinterval of I&$). However, let x be a maximal element of P. Then 
V([x, x]) E J(x) x V(x) g J(x) since V(x) = (x}. Now unless P consists of 
only one element, in which case everything is trivial, V([x, x]) is CM. Therefore, 
J(x) is CM. Similarly, if x is a minimal element of P, then V(x) is CM. It follows 
that P is ACM. 1 

We next consider two less familiar operations. If P and Q are posets, the 
cardinal power of P and Q, denoted either by PQ or by Hom(Q, P), is the set 
of all order-preserving functions f: Q -+ P, ordered componentwise: f <g if 
and only if f (x) <g(x) for all x E Q. In other words, PQ is given the induced 
order as a subset of the product P x P x *a. x P of 1 Q j copies of P. In the 
special case for which P is a two-element chain, we write 2Q for the cardinal 
power PQ. It is easy to see that 2Q is isomorphic to the distributive lattice of 
order-filters of Q ordered by inclusion. 



COHEN-MACAULAY ORDERED SETS 251 

In general PQ is not ACM even if both P and Q are CM. For example, let 
P be the poset 

w 
and let Q be the poset 1; then PQ is the poset 

which is far from being ACM. As another example, use 

for P and . for Q. Then PQ is not ACM even though both P and Q are acyclic i 

and CM. 
As a final example let P be the poset 

The cardinal power Pp is not even ranked even though P is an acyclic CM 
poset. Although it appears that we can say little about the cardinal power with 
regard to the CM property, it is possible that PQ is CM if P is CM. This is 
suggested by the analogous property for lexicographic shellability, which was 
shown by Bjorner [IO]. 

We now consider a rather less familiar operation. Let f: P -+ Q be a sur- 
jective order-preserving map such that x < y in P if and only if f (x) < f(y) 
in Q. We may think of P as being obtained by forming the (disjoint) union of 
the posets f-l(x) for x E Q and then decreeing that if x < y in Q then every 
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element off-l(x) is to be below every element off-‘(y). This is quite a different 
method for “constructing” posets from the fibration method described in 
Section 5. In contrast to the fibration method, one rarely finds that P is ACM 
in the situation above even if Q and all the inverse images f-‘(x) are CM. 
However, there is a special case that works. If the inverse images f-l(~) 
are all antichains we will say that P is obtained by replicating elements 
of Q. 

THEOREM 7.3. Let P be obtained by replicating elements of Q. Then P is CM 
07 ACM if and only if Q is also. 

Proof. By the obvious induction we need only consider the special case 
for which P has one more element than Q, say that f: P -+ Q is the natural 
map and that f  -l(xJ = {x r , xs}. Moreover, we may also assume by induction 
that P and Q are ACM. 

Assume that Q is CM. We wish to show that P is a bouquet. If P has a mini- 
mum element there is nothing to prove. By Theorem 5.2 applied to the map 

f :  P -+ Q, we are reduced to the case for which x,, is the minimum element 
of Q. We now take the order-dual of P and Q and proceed as before. As a 
result we may assume that x,, is both the minimum and maximum element of Q. 
This case is trivial so we are done. 

We now consider the converse. Assume that P is CM. We wish to show that 
Q is a bouquet. Consider the Leray spectral sequence for the map fi Pi -+ Q’, 
where f is the extension of f  such that {(‘i) = 1. Now if x # x,, or 1, then 
RQfJC[~], = 0, while 

Kifq=O 
R~*K[~lr = 10 if 4 f 01 

and (R~j,K[~]),O = P(~/x,, , I$]) = l?+l(f/x,, , K). By the first part of our 
proof, f/x0 is CM. Therefore (R~~JIT]),O = 0 for q # r(f/xJ. Therefore 
IPf.+K[T] = K[T] and 1P7(~l%“,,4*K[Li] are the only nonzero direct images of 
K[l]. We know that ZP’(Qf, K[T]) z @-l(Q, K), but we can say nothing about 
it yet. The only other terms in the spectral sequence are H”(Qf, R”fl%r~&[f]). 
Since Rr@~%lp*K[f] is supported on x0, the cohomology vanishes except for 
p = 7(x0) - 1. Since 7(x0) + r(f/xJ = 7(P) + 1, this term contributes only to 
W@)(Pi, K[f]) in the abutment of the spectral sequence. Therefore the Leray 
spectral sequence tells us that W(P$ ICI@]) = H”(Qf, Kfl]) for n < r(P) = 

Y(Q). Since P is CM, it follows that Q is also. 1 

8. COMBINATORLU HOMOTOPY 

In this last section we develop a combinatorial concept of homotopy that is 
applicable to arbitrary CM posets. Although we were originally motivated by 
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the work of Tutte [38], our result is more closely related to the Hurewicz 
theorem relating homotopy groups with homology groups (see Spanier [30, 
Section 7.51). In contrast to the topological theory, we can offer no satisfactory 
concept of “higher” homotopy groups. We add that the Homotopy Theorem 
(8.1), turns out to be quite useful for showing that particular examples of posets 
are CM. See [6, Example 2.101. 

Combining the rank selection theorem with the characterization of CM posets 
of length 1, we see that if y1 and rs are any two ranks of a CM poset P and if 
x, y E P both have rank rl , then there is a sequence x = x0, x1 ,..., x,, =y 
of elements of P such that the xi’s are alternately of ranks rl and r2 and such 
that xi and xi+1 are comparable for all i. We call such a sequence a path from x 
to y. 

More precisely, for a ranked poset P we define a path along ranks rl < y2 to 
be a function 

f: {O,..., 2n) -+ P such that 

and such that for all odd m, f(m) > f(m - l), f (m + 1). We call n the length 
of the path, and we call f (0) and f (2n) the endpoints of the path. A path is a 
Zoopatxiff(0) =f(2n)=x. 

Given a notion of “path” one immediately has a concept of a fundamental 
“groupoid.” Choosing a reasonable notion of “homotopy” of paths, one obtains 
a notion of a fundamental group. More precisely, let f and g be paths in a ranked 
poset along ranks rl < r2 . If the final endpoint off is the initial endpoint of g, 
then we may speak of the product h = fg of the paths f and g given by: 

h(‘) = Ii:- 2n) 
if O<j<2n, 
if 2n < j < 2n + 2m, 

where n and m are the lengths off and g respectively. 
To define a notion of homotopy of paths we must specify three ranks 

Yl < f.2 < y!J . Let f and g be two paths along ranks rl < y2 having the same 
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endpoints. We say j and g are simply homotopic in rank ra if there are paths 
h, , h, , j’, g’ along ranks ri < r2 and an element c E P of rank r3 such that 

(1) j = h, j’h, and g = h,g’h, , 

(2) c > j’(j) and c > g’(k) for all j, k. 

We call c the center of the simple homotopy. We will say that j and g are com- 
binatorially homotopic in rank rs if there is a sequence of simple homotopies in 
rank y3 joining j to g. 

Fix an element x of rank rr . The combinatorial homotopy classes in rank r3 
of loops at x along ranks ri < rs clearly define a group under the operation of 
product of paths. We write 7r(Ps , X) for this group, where S = {ri , r2 , r3}. 

If Ps is connected and if x’ is another element of rank ri , then there is a 
(non-unique) isomorphism of P(P, , x’) with n(Ps , x). We follow Spanier [30, 
Section 7.41 in writing 7r’(Ps , X) for rr(Ps , x) modulo its commutator subgroup. 

HOMOTOPY THEOREM 8.1. Let P be a connected poset of rank n which is 
ACM order Z. Let S = {rl < r2 < r3} C [n] be a set of three ranks of P and let 
x E P be of rank rl . Then there is a group isomorphism rr’(P, , x) g H,(P, Z). 

Proof. The homology version of Theorem 6.5 is true for an arbitrary 
principal ideal domain. Thus H,(P, Z) s H,(P, , Z). We also note that 
H,(P, Z> z H,(Ps , m) so Ps is also connected. Therefore we may assume 
without loss of generality that P = P, . 

Now the elements of A(P) h ave a natural orientation given by the ordering 
on P. We find it convenient to employ the following notation. If a, ,..., a, are 
elements of P, we define (a,, ; a2 ;...; at) to be 0 if either two of the ai’s are 
equal or (a, ,..., aE} is not in d(P), and otherwise to be -&(aiO < ... < ai,) E 
C&l(P), Z), where the sign is chosen to be the sign of the permutation needed 
to put {a0 ,..., a,} in order. 

Now for any path j in P we define [j] to be the sum 

VI = C (f(i); f(i + 1)) E G(W), Z>. 
O<i<% 

It is easy to verify that if j and g are combinatorially homotopic then [j] is 
homologous to [g], and if j and g are two loops at x then [jg] = [j] + [g]. 
Moreover, if j is a loop, then [j] is a l-cycle. Therefore j++ [j] defines a 
group homomorphism r’(P, x) -+ H,(P, Z), since H,(P, Z) is commutative. 

We first show surjectivity. It is easy to’ see that every l-cycle in P can be 
written in the form xf-=“, (aipl ; ai), where for all i, (aiel ; ai) # 0, and where 
a, = azN . We show that the l-cycle x:i”=“, (aim1 ; ai) is homologous to a l-cycle 
of the same form for which all the ai’s have ranks either 1 or 2. We do this in 
two steps. 
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We first prove that the l-cycle is homologous to one whose ai’s are alternately 
minimal and maximal elements. We do this by induction as follows. Suppose 
that ai is neither minimal nor maximal. 

Case 1. a,-1 > ai > a,,, . Choose a minimal element a; < ai . Then 
(aim1 ; ai) + (ai ; u,+~) is homologous to (aiel ; a:) + (a; ; u~+~). 

Case 2. Ui-1 < Ui > &+I. Choose a maximal element ai > a, and proceed 
as in Case 1. 

Case 3. ~i-i < ai < u,+~. Then (~i-i ; ai) + (ai ; u~+J is homologous to 
(ai-1 ; a,,,). 

Case 4. a,-i > ai > a,,, . Proceed as in Case 3. 
In every case above either ai is eliminated or ai is replaced by a minimal or 

by a maximal element. Therefore we may assume that ai is maximal for all 
even subscripts. 

Now for each even subscript we define a pathfi as follows. Since P is ACM, 
we know that Jai) is CM for all even i. Therefore there is a path along 
ranks 1 and 2 from aiel to ai+1 . Let fi be one such path. Then (a,-r ; ai) + 
(ai ; ai+r) is homologous to [fJ; indeed, if fi has length n, then the boundary of 

2n-1 

z. (fi(j); fi(i + 1); 4 

is [fil - (c-~ ; $ + (4+l ; 4. 
Therefore Ci=i (uiVl ; ai) is homologous to EL, [fii] = [nE,f2,,]. Set 

f = n:, fii . Then f is a loop at a, . Since P is connected, Pti,s} is also con- 
nected by Theorem 6.5. So there is a path g along ranks 1 and 2 from a, to X. 
Now g-lfg is a loop at x and [g-yg] is homologous to Cf=“, (ai_l ; ai). Sur- 
jectivity then follows. 

We now show that the map d(P, X) ---)r H,(P, Z) is an isomorphism. Let f 
be a loop at x such that [f] is homologous to zero. Then [f] is the boundary 
of a 2-chain w = Cl”=1 (ai ; bi ; ci). We can write w so that none of the terms 
(ai ; bi ; ci) vanish, so that ci is always larger than ai and bi and so that no terms 
can cancel any other. Clearly, up to order of summands, there is a unique way 
to write w as specified above. 

We now collect together the terms of w having the same largest element. 
This enables us to rearrange w as a double sum; 

Now f was assumed to be a path along ranks 1 and 2. Therefore it contains no 
maximal elements of P. Therefore, each l-chain czl (al(c); b,(c)) is actually 
a l-cycle, i.e. for each c E P3 , there is a loop fc such that czi (ai( bj(c)) = WC]. 
Moreover, since the boundary of w is [f], we conclude that [f] = CesPs [fJ. 
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Assume that [f] # 0. Then there exists an element d of rank 3 such that [f] 
and [fd] have a l-chain (a < b) in common. Without loss of generality we may 
suppose that (f(j - 1) <f(j)) = (fd(0) <fd(l)). Let h, be the restriction off 
to {O,...,j - I} and define h, so that f = h,h, . Thenf is homotopic to h&‘h, 

with center d. Now [U;lkJ = [Wd - [fd = VI - VA = LP3\m IN 
Continuing this procedure successively, we eventually find that f is homotopic 
to some loop f’ at x such that [f ‘1 = 0. 

Thus we may assume that [f] = 0. Let 12 be the length off. This means 
that there is a permutation u of the odd integers between 0 and 2n such that 
for all odd j, 

(f (4.0 - 1) < f (4i))) = (f (i + 1) < f (8). 

As noted earlier, P{r,a) is connected. Therefore for every a E P we may choose 
a path g[u] from x to a. In the special case a = X, we take g[x] to be the trivial 
loop at X. Write f as a product of n paths each of length 1: f = h[l] 431 ..* 
h[2n - 11. Then f is trivially homotopic to g[f (0)] h[l] g[f (2)]-lg[f (2)] 431 ..I 
h[2n - 11 g[f(2n)] = njoddg[f(j - l)] h[j]g[f (j + 1)1-l. Now each of the 
factors g[f (j - 111 Mjl g[f (j + 1>1-’ is a loop at x. So in n’(P, x) we may 
rearrange them as we please. In particular, we may arrange them according to 
the orbits of 0. 

Let 0 <j < 2n be odd and suppose that u”(j) = j but that u”(j) # j for 
0 < k < m. Then 

m-1 

go AxJYi) - 111 okmd.fkY~) + l)l-’ 

is homotopic to 

df(j- 111 (:@I &Vl) dY(j- l)l-’ (*) 

because f  (uk( j) + 1) = f  (@+I( j) - 1) f or all k. Now all the paths k[uk(j)] 
have the same top element f(j) = f  (u(j)) = ..* . Therefore (*) is homotopic 
to the trivial loop at x. Hence f  is equivalent to the trivial loop in &(P, x). g 

We may interpret the Homotopy Theorem as implying that CM posets 
obey a weak semimodularity law. More precisely, the ordinary semimodular 
law says that if X, y cover z then there is a w covering x and y: 

w 

x 

V 
Y * x 0 

Y 

z z 
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For CM posets, if x and y  cover z, then there is only a path of coverings from x 

toy: 

. . . 
x 

V Y 3 x 
v 

Y 

but these paths are all “combinatorially homotopic” (at least in the sense of 
rr’(P, x) rather than T@‘, x)). 
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